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Abstract

Chemical potential of photons in a black body

is zero. Thermodynamic interpretations for this

can be seen in books and publications[1, 2, 3].

In this short communication we are trying to

find out the reasons of making zero chemical

potential of photons in a hot body from the

quantum statistical mechanics view point.

1 Introduction

In thermodynamics, chemical potential
forms a central concept and has marked its
name in almost all the branches of science
and technology. The knowledge of chem-
ical potential of a material helps to obtain
almost all its thermodynamic properties at
a given temperature and pressure. Every
substance has a tendency to change, may be
a chemical reaction like rusting of iron or a

phase change like evaporation of water, it is
the chemical potential which controls them.
Josiah Willard Gibbs[4] formally introduced
the concept of chemical potential in his pa-
per ”On the Equilibrium of Heterogeneous
Substances.” Initially Gibbs termed it as
’intrinsic potential’ but later it was Wilder
Dwight Bancroft who coined it as ’chemical
potential’[5]. Gibbs introduction of chemi-
cal potential marked the birth of chemical
thermodynamics and made it possible to
apply thermodynamics to material science
and engineering. Maxwell[6] identified
temperature, pressure, and chemical po-
tential as potentials more than 140 years
ago.

2 Classical and quantum systems

There are two types of physical phenomena
which govern our lives, one is called clas-
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sical phenomenon and the other is called
quantum phenomenon. Classical phenom-
ena are the physical phenomena which is
natural to a human being and we experience
its effects directly. Newton’s laws are clas-
sical. Quantum phenomena are phenom-
ena which occur at the atomic level or at
the microscopic level and are indirectly per-
ceived. Black body radiation, photoelectric
effect etc are quantum phenomena. Laws of
micro world control these effects. Histori-
cally we have classical statistical mechanics
first and to get the quantum properties we
made modifications in the classical statisti-
cal mechanics by incorporating the follow-
ing nature of particles.

1. Wave particle duality

2. Spin

3. Identical nature of micro particles

For a high temperature system or for a clas-
sical system

N
V

λ3 � 1

where λ is the de Broglie thermal wave-
length and N

V is the number density. If any
system is not obeying this condition, it will
be a quantum system. So

N
V

λ3 � 1

N
V

λ3 = 1

and
N
V

λ3 ≈ 1

are some conditions for quantum systems.
For non relativistic particles, the de Broglie
wavelength[7]

λ =
h

(2πmkT)1/2

where m is the mass of the particle, T is the
absolute temperature, k is the Boltzmann
constant and h is the Planck constant. For
electron, mass m = 9.1 × 10−31 kg and then

λ = 7.466 × 10−8 × 1
T1/2

3 Examples

Let us study some systems at different
temperatures, the corresponding de Broglie
thermal wavelength λ and also find N

V λ3.

3.1 Electrons in semiconductors

For electrons in semiconductors, the number
density can be approximately taken as [8]

N
V

= 1025/m3

Then for different temperatures we get

Table I

T(K) λ3(m3) N
V λ3 Classical/

Quantum
10 1.314 × 10−23 1.314 × 102 Quantum
102 4.15 × 10−25 4.15 Quantum
103 1.314 × 10−26 1.314 × 10−1 Quantum
104 4.15 × 10−28 4.15 × 10−3 Classical
105 1.314 × 10−29 1.314 × 10−4 Classical
106 4.15 × 10−31 4.15 × 10−6 Classical
107 1.314 × 10−32 1.314 × 10−7 Classical
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From Table I we can see that at high
temperatures electrons in semiconductors
show classical nature.

3.2 Electrons in a metal

The number density of electrons is approxi-
mately taken as [9]

N
V

= 1028/m3

Then we get

Table II

T(K) λ3(m3) N
V λ3 Classical/

Quantum
10 1.314 × 10−23 1.314 × 105 Quantum
102 4.15 × 10−25 4.15 × 103 Quantum
103 1.314 × 10−26 1.314 × 102 Quantum
104 4.15 × 10−28 4.15 Quantum
105 1.314 × 10−29 1.314 × 10−1 Quantum
106 4.15 × 10−31 4.15 × 10−3 Classical
107 1.314 × 10−32 1.314 × 10−4 Classical

From Table II we can see that for free elec-
trons at very high temperatures, the behav-
ior is classical.

4 Black body radiations

All objects with a temperature above abso-
lute zero emit energy in the form of electro-
magnetic radiations. A black body is a body
which absorbs all radiations falling on it and
when heated it emits all kinds of radiations.
The intensity distribution of the thermal en-
ergy radiated by a black body depends on its

temperature and wavelength or frequency
and is given by Planck’s distribution law [9]

u(ν)dν =
8πhν3

c3
1

exp
(

hν
kT

)
− 1

dν

where u(ν)dν is the energy density between
ν an ν + dν with ν is the frequency and c is
the velocity of light. To get this expression
for photons we took the chemical potential
as zero.

5 Thermodynamic interpretations

for µ = 0

Many authors give different reasons for
chemical potential to be zero. According
to Pathria[1] ”This is due to the fact that
the total number of particles in the present
case is indefinite. For then, their equilib-
rium number N has to be determined by the
condition that the free energy of the system
is at its minimum, that is,

(
∂A
∂N

)
V,T

= 0,

which, by definition, implies that µ = 0 and
hence z = 1”. K Huang[2] says ”One would
say that chemical potential is zero, because
a photon can disappear into vacuum”. R.
E Kelly[3] says ” The chemical potential of
photon gas in equilibrium in a volume, V
and at temperature T, is formally given by
µ = 0. The physical reason for setting chem-
ical potential zero is that number of photons
in the volume cannot be arbitrary. That is
number of photons are constantly adjusted
so that the photon gas is in thermal equi-
librium with the constant temperature walls
of the container. Even a gas of photon far
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out in space not contain a fixed number of
photons, since photons can be annihilated or
created in collision. Therefore, when writ-
ing the thermodynamic identity for photons
gas the term µdN, in the equation of change
in internal energy dU = TdS − pdV + µdN
, µdN should be omitted since N cannot be
held fixed anyway. This is formally consis-
tent with the setting µ = 0 . ”

6 Why nature made µ = 0 for

photons ?

Let us look at the same issue in a different
perspective. For photons the number den-
sity [8]

N
V

=
∫ ∞

0
n(ν)dν

Therefore,

N
V

=
∫ ∞

0

u(ν)dν

hν

where u(ν)dν is the energy density between
ν and ν + dν. Substituting Planck’s distribu-
tion law we get

N
V

=
8πν2

c3

∫ ∞

0

1

exp
(

hν
kT

)
− 1

dν

Putting hν
kT = x and carrying out suitable

substitution

N
V

= 8π

(
kT
hc

)3 ∫ ∞

0

x2

ex − 1
dx

N
V

= 8π

(
k
hc

)3

× 2.404 T3

For photons the de Broglie wavelength,

λ =
hc

2π1/3kT

Then
λ = 4.92 × 10−3 × 1

T
For photons at different temperatures

Table IV

T(K) λ3(m3) N
V (/m3) N

V λ3

10 1.19 × 10−10 2.016 × 1010 2.399
102 1.19 × 10−13 2.016 × 1013 2.399
103 1.19 × 10−16 2.016 × 1016 2.399
104 1.19 × 10−19 2.016 × 1019 2.399
105 1.19 × 10−22 2.016 × 1022 2.399
106 1.19 × 10−25 2.016 × 1025 2.399
107 1.19 × 10−28 2.016 × 1028 2.399

From Table IV we see that N
V λ3 is always

a constant, which means that the photons
are always quantum from very low temper-
atures to high temperatures.

7 Conclusions

Making chemical potential zero helps a
black body to be a quantum system at all
temperatures. In many systems number
density will be fixed and it is the tempera-
ture that decides when the system has to be
a quantum system, whereas photon produc-
ing systems are always quantum systems
and this is possible only when chemical po-
tential is set to zero. In short nature makes
a photon a quantum particle by making its
chemical potential zero.
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Abstract

Complex numbers can be introduced in a more

intuitive and accessible manner using geometric

ideas. In this note, we present such an approach

wherein the process of rotation on a plane, well

known to students, is used to motivate the

multiplication rule for complex numbers.

Complex analysis is an important part
of the mathematical training for science and
engineering students. However, for many
beginning student in these fields, the alge-
bra of complex numbers, in particular the
multiplication rule, appears strange. They
are shown a mysterious symbol i, and they
are told that it is subject conveniently to the
rule i2 = −1. They are then told that com-
plex numbers are defined as expressions of
the form x + iy, where x and y are arbitrary
real numbers. Next, the formula for multi-
plying two complex numbers is derived for
them from the fact that i2 is supposed to
be −1. All this leaves much unease among
such students. They have worked only with
real numbers so far, so they expect to asso-

ciate a physical quality (such as a length)
with numbers. Pulling a mysterious symbol
i out of thin air and announcing the conve-
nient rule that it squares to −1 appears arti-
ficial and ungrounded to them.

It is possible to present complex num-
bers differently, in a manner that resonates
with those science and engineering stu-
dents who understand mathematics better
through physical objects and physical pro-
cesses. The existence of a number that
squares to −1 falls out naturally in this ap-
proach! We describe that presentation in this
note.

As a prelude, let us recall what multipli-
cation on a real line involves. The tip of an
arrow from the origin to a point on the real
line represents the real number correspond-
ing to that point. For instance, the number
1 requires an arrow of length 1 unit drawn
from the origin along the positive real axis.
The real number −2 requires an arrow of
length 2 units drawn from the origin along
the negative real axis. How do we interpret
multiplication in this representation of real
numbers by arrows? If we multiply a num-

37/2/02 1 www.physedu.in



Physics Education April - June 2021

ber k by the positive number 2, the length
of the arrow representing k changes by a
factor of 2. If we multiply by the negative
number −1.5, the length becomes 1.5 times
the original length and direction flips. Thus,
heuristically, we can interpret multiplication
as a process of scaling the first arrow by the
length of the second arrow, and additionally
flipping it if the second arrow points along
the negative real axis. Of course, this pro-
cess is symmetric: we can just as easily in-
terpret multiplication as scaling the second
arrow by the length of the first arrow and
flipping it if the first arrow points along the
negative real axis. The key though is that
multiplication of real numbers can be mod-
eled by the two physical processes of scaling
and flipping of arrows.

Of course, the addition of two real num-
bers can be interpreted using arrows as well:
to add 2 to 3 for instance, we simply trans-
late the vector representing 2 so that its tail
now lies at the tip of the vector represent-
ing 3. The tip of the resulting vector now
rests at the number 5. The same procedure
can be performed for adding, say, 2 to −3:
we translate the vector representing 2 to the
tip of the vector representing−3, and the tip
of the resulting vector will now rest at the
number −1.

To discuss complex numbers, we begin
with a discussion on the xy plane familiar to
everyone. Once again, a point on the plane
can be represented by the tip of an arrow
extending from the origin to that point on
the plane. Like in the case of the real line,

an arrow on the plane can be stretched or
shortened, flipped to point in the opposite
direction, and translated along a second ar-
row. But unlike in the case of the real line,
an arrow on the plane can also be rotated. It
is this last feature — rotation — that allows
us to present complex multiplication via a
purely physical phenomenon! Moreover, ro-
tation will reveal very naturally that there is
a physical object (in fact, two!) whose square
turns out to be −1.

We now define complex numbers to sim-
ply be arrows, also called vectors, on the xy
plane, with their tails at the origin. Thus,
each complex number is represented by an
ordered pair (x, y) representing the tip of the
vector. We add two complex numbers u and
v by simply translating the vector v along
the vector u till its tail lies at the tip of u. See
Figure 1. The arrow drawn from the origin
to the tip of this translated arrow will repre-
sent the addition u + v. This is entirely anal-
ogous to how we interpret addition of two
real numbers when they are represented as
arrows along the real axis. This process is
also known as the parallelogram law for ad-
dition of vectors.

It is easy to see using elementary geom-
etry that if u = (x, y) and v = (a, b) then
u + v = (x + a, y + b). This same formula,
as also just the underlying process of trans-
lation, show that addition is commutative:
u + v is the same as v + u.

To introduce multiplication using this
framework, let us begin with the alterna-
tive polar form of a complex number. Let
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Figure 1: Parallelogram law for addition of vectors: v is translated along u, parallel to itself,
as shown by the dotted arrows.

u = (x, y) be a complex number, so u is
an arrow with tail at the origin and tip at
(x, y). Dropping a perpendicular from the
tip to the x axis gives a right triangle. See
Figure 2. If r is the length of the arrow, the
coordinates (x, y) can be re-expressed as

(x, y) = (r cos θ, r sin θ), (1)

where θ is the counter-clockwise angle be-
tween the arrow and the positive x-axis as
shown in Figure 2. (We will informally re-
fer to θ as the angle of the vector u.) Also,

r =
√

x2 + y2, which is the result of ap-
plying the Pythagoras theorem to the right
triangle shown in Figure 2. Now, consider
rotating the arrow further in the clockwise
direction by φ. The point corresponding
to the tip of the arrow is changed to, say,
(x′, y′). This resultant point can also ex-
pressed in terms of r and, the angles θ and φ

as (r cos(θ + φ), r sin(θ + φ)), since the new
vector now lies at a counterclockwise angle
of θ + φ with respect to the positive x-axis.
Expanding the cosines and sines gives

(x′, y′) = (r cos θ cos φ− r sin θ sin φ, r sin θ cos φ− r cos θ sin φ). (2)

Using Eq.1, we rewrite the previous expres-
sion as

(x′, y′) = (x cos φ− y sin φ, x sin φ+ y cos φ).
(3)

This relation connects (x, y), the coordinates
prior to the rotation, to (x′, y′), the coordi-
nates after the rotation.

Now here is the leap of imagination:
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Figure 2: Description of rotation on a plane. The vector u is rotated by the angle φ of the
vector v.

Just as the physical processes of scaling and
flipping of arrows on the real line repre-
sent multiplication of real numbers, could
we not use the physical process of rotation
of arrows on the plane to represent mul-
tiplication of complex numbers? In other
words, can we interpret the rotation of u
by the angle φ to be the result of perform-
ing a multiplication u · v for some as yet un-
known complex number v? If yes, what is
a good candidate for v? Since we are ro-
tating u by an angle φ, and not changing
the length in the process, a reasonable can-
didate for such a complex number would
be v = (cos φ, sin φ). After all, this is the
complex number represented by a vector at
a counter-clockwise angle of φ from the pos-
itive x-axis, and of unit length.

Notice that if we were to write a for
cos φ and b for sin φ (so v = (a, b)), then
a2 + b2 = 1 as v is of unit length. Also notice
that in Equation 3, we can write (x′, y′) =

(xa− yb, xb + ya).

Motivated by this heuristic, we will
now decree that for u = (x, y) and v = (a, b)
where a and b satisfy a2 + b2 = 1 (so a =

cos φ, b = sin φ, where φ = cos−1(a) =

sin−1(b)), the product u · v will be obtained
as the result of rotation of u by the angle
φ = cos−1(a) = sin−1(b), and will there-
fore have the formal expression u · v = (xa−
yb, xb + ya).

What should we do when v = (a, b)
and a2 + b2 6= 1. Write s =

√
a2 + b2. If

we assume v 6= (0, 0) then s 6= 0. So v is
just the vector v′ = (a/s, b/s), but scaled by
s. The vector v′ is of course of unit length,
and as before is of the form (cos φ, sin φ)

where φ = cos−1(a/s) = sin−1(b/s). So, we
now interpret multiplication of u by v as first
multiplying u by v′ (which is in effect rota-
tion by φ) and then simply scaling the result
by s. As we have seen, the result of multiply-
ing u = (x, y) by v′ (which is of unit length)
is (xa/s− yb/s, xb/s + ya/s), and the effect
of scaling this by s of course yields back the
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previous expression (xa− yb, xb + ya).

Finally, we will decree that multiplying
u by the zero vector (0, 0) yields the zero
vector (0, 0). Since (0, 0) = (x · 0− y · 0, x ·
0 + y · 0), we see that the formula for our
multiplication of u = (x, y) by v = (a, b) in
all cases reads u · v = (xa− yb, xb + ya).

Notice that our final product expression
(xa− yb, xb+ ya) is unchanged if we swap x
and y with a and b respectively. This shows
that our multiplication operation is commu-
tative: u · v is the same as v · u.

This is a perfectly valid way to define
the set of complex numbers! To summarize:
We define them as vectors in the plane, with
addition given by translating the first vec-
tor along the second vector, and multiplica-
tion given by rotation of the first vector by
the angle of the second vector and scaling
by the length of the second vector! Both ad-
dition and multiplication are commutative,
as we have seen above. The real numbers
show up in this representation as the vectors
along the x-axis. Also, quite visibly, the for-
mulas we get for the sum and product are
exactly what we get when addition and mul-
tiplication are defined in the standard way:
(x + iy) + (a + ib) = (x + a) + i(y + b) and
(x + iy) · (a + ib) = (xa− yb, xb + ya).

Notice now that we can use our phys-
ical representation to show that there is a
complex number u whose square is −1.
Note that −1 is the vector (cos π, sin π)

pointing along the negative x-axis of mag-
nitude 1. We therefore need to search
for a vector u of magnitude 1, so of

the form (cos φ, sin φ), which when rotated
by its own angle φ (which corresponds
to multiplying by itself) yields the vector
(cos π, sin π). Essentially, we need u · u =

(cos 2φ, sin 2φ) = (cos π, sin π). Clearly u =

(cos π/2, sin π/2) = (0, 1) is a fine choice.
So too is u′ = (cos 3π/2, sin 3π/2) =

(0,−1). We may pick (0, 1) as our primary
choice for a square root of −1 and denote it
as “i” (so the other choice is −i). This will
hopefully take the mystery out of the com-
plex number i by showing how naturally it
arises as a physical object under these phys-
ical rules for multiplication!

One final fact about this representation:
it is easy to use this representation to see
how to divide u by a nonzero v. Obviously,
u/v = u (1/v), so it is sufficient to deter-
mine 1/v. When v is of unit length, it is clear
what (1/v) should be. If v = (cos φ, sin φ),
then because 1 = (1, 0) = (cos 0, sin 0),
we need to rotate v back or clockwise by φ

to bring it to angle 0. Alternatively, we
need to rotate it counterclockwise by −φ.
The complex number 1/v that will per-
form this rotation is (cos(−φ), sin(−φ)) =

(cos φ,− sin φ). This is of course just the
usual “complex conjugate” of v. When v
is has magnitude r 6= 1, then we need
to rotate by −φ and then further scale by
1/r to get a final length of 1, so 1/v =

(1/r)(cos φ,− sin φ).

It is also worth noting that the stan-
dard expression x + iy for a complex num-
ber stems from picking 1 = (1, 0) and i =

(0, 1) as a basis for R2 and writing the vec-
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tor with tip at (x, y) as x · 1 + y · i = x + iy!

We remark that the need for complex
numbers in physics can be motivated via
the Pauli algebra, which is the geomet-
ric algebra of the three dimensional Eu-
clidean vector space, as well [1, 2]. In-
terestingly, Hamilton tried a similar ap-
proach, of defining multiplication on three-
dimensional vectors by geometric processes,
for constructing a three-dimensional num-
ber system in which one can meaningfully
perform division. But he was not successful
at creating one. However, he succeeded in
formulating a four-dimensional number sys-
tem in which division was possible. namely,
the quaternions[3].

There are many excellent textbooks on
complex analysis. We suggest the books by
Flanigan[4] and Needham[5] for accessible
and refreshing introductions to the subject.
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Abstract 
In high school physics it is usually taught that 

Voltmeters (DC) can only measure potential 

differences by drawing some current and (Circuit) 

Potentiometers can measure the EMF 

(Electromotive Force) of a cell. In this paper, the 

author discusses about a setup involving a voltmeter 

such that the voltmeter measures the EMF of the cell 

exactly.  

 
1. Introduction 
Electrical devices like voltmeters (DC) and 

potentiometers are generally introduced in high 

school physics as electrical equipment that measure 

potential differences in DC circuits. A voltmeter 

needs some power for itself to consume for 

measuring the emf of the cell and hence it will 

always indicate a voltage reading less than the actual 

EMF i.e., as the voltmeter itself draws some current 

so it cannot be used for measuring the EMF of the 

cell. Potentiometers get around with this by the null 

method. So, a potentiometer can give the exact value 

of potential difference across any two points in a circuit 

because it never draws any current from the circuit. 

Hence, potentiometers can measure the EMF of a cell 

exactly. In the following section, the author discusses  

 

 

about a possible set up where the voltmeter can 

measure the exact EMF of a cell by exploiting the null 

method. 

 

2. Voltmeter as EMF-measurer 

A voltmeter and a potentiometer do not have much 

difference between them because they both consist of 

resistances and galvanometers. The apparent difference 

that makes a potentiometer bit special from a voltmeter 

is that one can measure EMF of a cell exactly and this 

is solely possible as one implicitly applies the null 

method to measure potential differences in a 

potentiometer. No amount of current gets drawn into 

the measuring apparatus in null method, by definition. 

Consider the following circuit [1]:               
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In this circuit 𝑒1 is a cell of (known) EMF 𝑒1, 𝑒2 is the 

cell whose EMF is to be determined (also 𝑒1 > 𝑒2), 𝑟1 

is a rheostat and 𝑟2 is the total resistance of the circuit 

(wire) to which the cell of unknown EMF is connected. 

Except 𝑒2  & 𝑟2 , the rest of the circuit is our EMF 

measuring apparatus, which, as evident from the above 

circuit diagram, contains a (DC) Voltmeter and an 

(DC) Ammeter (or Galvanometer would also work) 

besides 𝑒1  & 𝑟1. After connecting the circuit like the 

above circuit diagram, we adjust 𝑟1  such that the 

ammeter shows a zero reading i.e., no current flows 

through the cell of EMF 𝑒2. So, for this cell the lost 

volt is zero as well. Therefore, the voltmeter simply 

indicates the EMF of this cell i.e. the reading of the 

voltmeter is 𝑒2, which is the exact value of the EMF of 

the cell whose EMF we wanted to determine in the first 

place. 

3. Condition 
In the previous section we concluded that if the 

ammeter shows a zero reading the voltmeter can easily 

measure the exact EMF of the cell. At this point the 

reader might have several questions in mind like – now 

that the voltmeter is measuring the exact EMF of the 

cell, is the voltmeter not drawing any current from the 

circuit? And the answer is both Yes and No. It is 

correct that still some amount of current (that basically 

passes through loop ABCDA) do flow through the 

voltmeter but on the other hand the voltmeter is not 

drawing any current from the circuit whose potential 

difference it is measuring (which is ensured by the zero 

reading of the ammeter). Henceforth, we find the 

sufficient and necessary condition such that the 

ammeter shows zero reading.

 

Note, as the voltmeter draws current from 𝑒1, so by Ohm’s law the current (𝐼) passing through the voltmeter 

would be (as per the above circuit diagram): 

∴ 𝐼 =
𝑒1 − 𝑒2
𝑟1

, 𝑒1 > 𝑒2 

This is the value for current passing through the voltmeter when the ammeter shows a zero reading. Now, 

apply Ohm’s law to the segment BC to get the expression of current flowing through the voltmeter: 

∴ 𝐼 =
𝑒2
𝑅

 

Where, 𝑅 is the internal resistance of the voltmeter. Equating both the expressions we got for 𝐼, we get the 

following expression for 𝑟1: 

∴ 𝑟1 = 𝑅 (
𝑒1 − 𝑒2
𝑒2

) 

This is our required necessary condition as from the 

above expression one can easily conclude that 𝑟1 

(which being a rheostat, we can adjust its value to make 

the reading of the ammeter equal to zero) is a function 

of 𝑒2  i.e. EMF of the cell, whose EMF is to be 

measured and moreover, if by adjusting our rheostat we 

could obtain this value of the resistance (RHS) such 

that the null condition prevails, then this will serve as a 

sufficient condition for our problem in hand. Note that 

the current 𝐼 is not in our control and we do not need to 

know 𝑒1 or 𝑅 to achieve this condition. 
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4. Remarks 
From the analysis in the previous section we can draw 

some conclusions as follows –  
 None of the parameters (𝑒1, 𝑟1, 𝑅) of our EMF 

measuring apparatus circuit depend on 𝑟2  in 

any way whatsoever. 

 𝑒1 > 𝑒2 i.e., the EMF of the cell in our EMF 

measuring apparatus must be greater than the 

EMF of the cell, whose EMF is to be 

determined. This result is quite intuitive 

because 𝑒1 kind of provides some current that 

cancels the current coming from 𝑒2  from the 

opposite direction and at the same time feeds 

the voltmeter with necessary power (by letting 

it to draw current) for its operation. 

 From the expression of 𝑟1 it is also clear that 𝑟1 

can be less than (𝑒1 < 2𝑒2), greater than (𝑒1 >

2𝑒2) or even equal (𝑒1 = 2𝑒2) to 𝑅 . That is 

why in our apparatus it was suggested to use a 

rheostat rather than a fixed-value resistor. 

 The readings of our EMF measuring apparatus 

and that of a voltmeter (identical to the one 

used in the former or may be using the same 

one) can be compared to determine the amount 

of current drawn by the voltmeter and the 

percent error of the voltmeter in determining 

the exact EMF of a cell can be evaluated as 

well. 

 Perhaps, the only limitation in the proposed 

method is the difficulty that varying rheostat is 

much less sensitive than adjusting the jockey 

on a long wire of a potentiometer.   

 

 

 

 

 

 

5. Conclusion 
Therefore, through the above analysis, we have 

successfully worked out the conditions and the 

apparatus design in which a voltmeter also can 

exactly measure the EMF of a cell. The apparatus 

design and proposed method to measure the EMF of 

a cell with a voltmeter should be achievable quite 

easily in a high school laboratory setting and it 

avoids the long potentiometer setup as well. 

Moreover, by understanding the above circuit design 

and exercise the author wants to impress upon the 

significance of the null method that is implicitly 

instrumental in measuring the EMF of the cell in 

both the cases of our EMF measuring apparatus and 

the standard circuit potentiometer apparatus. In our 

EMF measuring apparatus as well the null method 

is applied when the ammeter reading is set equal to 

zero. 
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Abstract 
 Magnetic field is induced in a current carrying 

coil, which can be measured by deflection θ 

(theta) of a magnetic needle in a compass. 

Conventional method to determine the radius of 

circular coil is by using compass. An innovative 

approach to find the variation of magnetic field 

intensity with distance and hence radius of 

circular coil was applied using cellophane sensor. 

In present work, a cellphone sensor has been 

used to determine the magnitude of magnetic 

field induced in the coil which is proportional to 

the current passing in the coil. Radius of circular 

coil was determined by the Gaussian nature of 

magnetic field versus distance curve. Variation in 

maximum magnetic field with current and the 

results for radius of the circular coil are reported. 

Keywords: Cellphone sensor, Magnetic field, 

Circular coil 

 

1. Introduction 

Almost all cellphones include sensors for motion, 

light, sound, magnetic field and ambient pressure. 

There is an accelerometer, gyroscope, 

magnetometer, proximity sensor, light sensor, 

touchscreen sensor etc.in a cellphone [1-3]. A 

magnetometer measures the magnetic field in 

three dimensions and can also be used to measure 

the total magnetic field. The magnetometer sensor  

uses the solid-state technology and has a small 

Hall-effect sensor that detects the Earth's 

magnetic field along three axes X, Y and Z. The 

Hall-effect sensor produces voltage in response to 

a magnetic field which is proportional to the 

strength and polarity of the magnetic field along 

the axis each sensor is directed. The voltage 

produced is then converted to digital signal 

representing the magnetic field intensity.  Other 

techniques used for magnetometer includes 

magneto resistive devices which change the 

measured resistance based on changes in the 

magnetic field. Magnetometer is also able to 

detect the position of cellphone, tilt and 

movement with the help of solid-state sensors in 

the cellphone. It is enclosed in a small electronic 

chip. In 1831, Michael Faraday reported on a 

series of experiments, including three that can be 

characterised as (a) He pulled a loop of wire to 

the right through a magnetic field, a current 

flowed in the loop. (b) He moved the magnet to 

the left, holding the loop still. Again, a current 

flowed in the loop and (c) With both the loop and 

the magnet at rest, he changed the strength of the 

field. Once again, current flowed in the loop [4-

6]. 

An important current configuration in the study of 

magnetostatics is a circular loop carrying a 

mailto:sarnavee@gmail.com


Physics Education                                                                                 April – June 2021  

 

 

 37/2/04                                                                     2                                                     www.physedu.in  

current (i). it can be readily produced in the 

laboratory because it a closed path along which a 

steady-current flow continuously. The single loop 

idea can be extended to a solenoid which is 

nothing but a succession of single loops on the 

same axis. The Biot-Savart law and the 

superposition principle can be used to calculate 

the magnetic induction of a loop along its axis. 

Figure 1 shows a point P at a distance z from the 

centre O of a circular coil of radius a. OP is the 

axis of the coil and the current is anticlockwise as 

seen from P. We consider an element dl of the 

circle and calculate dB at P due to idl. 

 

 

FIG. 1: Magnetic induction along the axis of a 

circular current loop of radius “a”. 

 

dB will be perpendicular to the plane containing 

dl and r. This is a plane passing through P and 

tangent to the circle at dl, the angle between dl 

and r is 90°. The vector dB which is normal to the 

plane of dl and r is also shown. Clearly if this 

makes an angle θ with z-axis, dB makes an angle 

(90- θ) with the z-axis. 

The Biot-Savart law gives, 

   𝑑𝐵 =
𝜇0

4𝜋

𝑖𝑑𝒍 × 𝒓

𝑟3
       ….1.1 

            =
𝜇0

4𝜋

𝑖𝑑𝑙

[𝑧
2

+ 𝑎2]
                       ….1.2 

The circular loop may consider to be made of 

equal elements dl. Each element produces a field 

dB of magnitude given by above equation. The 

direction of each vector lies on the curved surface 

of a cone as shown in the figure. Thus, 

summation of dB is the resultant of all these 

vectors dB oriented symmetrically about the z-

axis. The direction of their resultant must be 

along the z-axis. Once the direction of resultant of 

several vectors are known, the magnitude of the 

resultant can be evaluated by adding up the 

components of those vectors along the direction 

of their resultant. Now, only one integral is 

required. In this case, we have only to evaluate 

summation of dBz. The dBz is obtained by 

multiplying the right hand side of the above 

equation by “sin θ =a/((a2+z2)0.5)”. Replace dl by 

the circumference of the loop 2πa. A convenient 

expression for B at any point on the axis is,  

 𝐵 =
𝜇0𝑖𝑎2

2𝐿3                                   ….1.3 

Where, L is the distance between the field point 

and any point on the loop. This L is same as r. 

According to Faraday, when the circular coil is at 

rest, the variation in current passing through the 

coil causes a change in strength of induced 

magnetic field [5-8]. The magnetic field varies 

with distance as B=μ0IA/ (2πx3), where I, is the 

current, A is the area, B is the magnetic field 

along the axis of the coil and x is the distance 

from the coil. Here area is constant for a coil; 

thus, for a constant value of current, magnitude of 

magnetic field varies inversely as distance. 

Similarly, for a particular distance, magnetic field 

varies as current [4-5]. Maximum magnetic field 

is observed at x=0. This is observed in the graph 

which is of Gaussian nature [9-10].  

2. Experimental Details 

A coil whose number of turns can vary was used 

in the present experiment. A calibrated flat base 

was arranged perpendicular to the plane of coil 

and passing through the centre of coil. Cellphone 

was mounted on the moving bar horizontally such 

that the sensor of the cellphone was just below 

the coil if observed from the top. The cellphone 

was tied to the moving bar with the help of string. 

The calibrated base read “0” where the coil 
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coincides the position of sensor. The number of 

turns of the coil were set to 550.The circuit was 

connected as per the diagram shown in Figure 2. 

The current in the ammeter was adjusted with the 

help of rheostat. Corresponding reading of 

voltage was noted from power supply. The 

cellphone mounted on moving bar was kept 20 

cm away from the centre of coil along its axis. 

The readings of magnetic field for every 1.0 cm 

distance were taken by keeping the constant 

current. Then, the cellphone was moved away 

from the centre of coil in the same direction as 

before but on the other side. Physics Tool android 

application was used to measure the magnetic 

field. 

Then the current was increased with the help of 

rheostat. Corresponding reading of voltage was 

noted again and the cellphone was moved over 

the calibrated base and the procedure was 

repeated for entire scale. Similarly, a set of 

readings for one more value of current was taken 

and recorded. Physics Tool android application 

has provision to save the readings in digital form 

i.e., an Excel sheet. 

 

 

.    

FIG. 2: Experimental set up: (1) circular coil (2) 

calibrated horizontal base (3) cellphone-sensor 

(4) rheostat (5) ammeter (6) power supply and (7) 

key 
 

3. Results and Discussion 

3.1 Magnetic Field with cellphone sensor 

The power supply was switched on. The current 

in the ammeter was adjusted with the help of 

rheostat and was kept 38mA. Corresponding 

reading of voltage was noted from power supply. 

The cell-phone mounted on moving bar was kept 

20 cm away from the centre of coil along its axis. 

The readings of magnetic field for every 1cm 

distance were taken keeping the current constant. 

Thus, according to the formula value of induced 

magnetic field increased when the distance of 

cell-phone from the centre of coil was decreased. 

At the centre maximum magnetic field was 

observed as per Biot-Savart’s law i.e., B0 was 

observed to be 1.49 Gauss. As the cell-phone was 

moved away from the centre of coil in the same 

direction as before, the value of induced magnetic 

field decreased. At 20 cm, from the centre of coil, 

the minimum value of induced magnetic field was 

observed. This gave rise to Gaussian nature of 

graph of magnetic field versus distance. 

Thereafter, the current was increased to 60 mA 

with the help of rheostat. Corresponding reading 

of voltage i.e., 19.6 V was noted and the 

cellphone was moved over the calibrated base 

yielding one more curve of Gaussian nature 

(induced magnetic field versus distance). The 

maximum induced magnetic field i.e., B0 was 

observed to be 2.23 Gauss. Further, current was 

again increased to 90 mA and corresponding 

voltage was noted as 28.9 V, the procedure was 

repeated with maximum value of induced 

magnetic field has been observed 3.22 Gauss. The 

comparative data are shown in Table 1. 

Table 1: Radius of circular coil 

Current 

(mA) 

Voltage 

(V) 

Max. 

Magnetic 

Field (B0) 

GAUSS 

0.707xB0 

GAUSS 

RADIUS OF 

COIL (CMS) 

38 12.3 1.49 1.07 10.4 

60 19.6 2.23 1.57 10.2 

90 28.9 3.22 2.27 10.1 

1 

2 3 

4 

6 5 7 
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Magnetic flux lines are induced due to current 

carrying loop. These flux lines are denser near the 

coil. The strength of magnetic field depends on 

the density of these flux lines. When the sensor 

(or cellphone) is 20 cm away from the coil, the 

density of these flux lines is less. Thus, low value 

of magnetic field intensity was observed. When 

the sensor approaches towards the coil, the 

magnetic flux lines become denser. Thus, greater 

value of magnetic field intensity was observed as 

we move closer to the coil carrying current. The 

flux lines are maximum at the centre of the coil. 

Therefore, the maximum value of magnetic field 

intensity was observed at the centre. As the 

sensor moves away from the coil in the other 

direction, the density of flux lines decreases. 

Thus, decreasing value of magnetic field intensity 

was observed as we move away from the current 

carrying coil. As the current passing through the 

coil is increased, a greater value of maximum 

magnetic field intensity was observed. 

We have plotted a graph for variation of magnetic 

field with distance for three different values of 

currents and voltages. It was observed to be of 

Gaussian in nature. The maximum values of 

magnetic field intensities for three different 

values of current lies in the same YZ plane. The 

screenshot of sensor application with magnetic 

field and without field are shown in Figure 3 (a) 

and 3(b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3: Screenshot of sensor application (a) Without magnetic field (top) and (b) with magnetic field 

(down) 

3.2 Determination of Radius of Circular Coil 

Figure 4 shows the variation of magnetic field 

with distance from the centre of circular coil. To 

estimate the radius of circular coil, the 0.707 of 

maximum magnetic field (i.e., B0) was taken and 

a horizontal line parallel to x-axis was drawn. 

Two perpendiculars were drawn from the points 

where the horizontal line intersected the graph. 

The distance between the feet of perpendiculars 

yielded radius of the circular coil. 
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Similarly, the values of radii for other two curves 

of Gaussian nature were obtained. Three values 

of radii for the corresponding values of current 

were obtained. Table 1 shows the comparative 

data for different values of currents i.e., radius of 

circular coil. It is found that the observed radii 

were very close to the actual radius of the circular 

coil which was 10 cms.  

 

 FIG. 4: Variation of magnetic field with distance 

using cellphone sensor 

Conclusion 

The present experiment is simple to understand 

the fundamentals of physics and can be carried 

out for an undergraduate laboratory. It is 

concluded from the above study that radius of the 

circular coil is found to be very close value of its 

true value.  The expected error in measurement of 

magnetic field is less than 0.5μT. A cellphone 

sensor can be used to measure the magnetic field 

intensity with better resolution. 
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