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Abstract 
The Kaprekar numbers were introduced by an 
Indian recreational mathematician D.R. Kaprekar. 
A Kaprekar number is such that its square can be 
split into two parts so that the sum of these two 
parts is equal to the number. By extending the 
definition of Kaprekar number to binary number, 
the Kaprekar number can be expressed in binary 
form. The multiplication of Kaprekar numbers in 
binary form is discussed by taking two algorithms 
used in digital signal processing. Multiplier circuits 
for squaring and multiplying kaprekar numbers in 
binary form are given.  
Tags: Kaprekar numbers, Binary numbers, 
Algorithm, Multiplier. 
 

 

1. Introduction 
The Kaprekar numbers were introduced by 

Dattathreya Ramachandra Kaprekar(1905-1986). 

D.R.kaprekar was an Indian recreational 

mathematician.  

A Kaprekar number for a given base is a non-

negative integer, whose square can be split up into 

two parts, which add up to the original number 

again. 

Let 𝑋 be a non-negative integer and 𝑛 is a positive 

integer.  𝑋 is known as a 𝑛- Kaprekar number for 

the base 𝑏, if there exist a non-negative integer 𝐴 

and positive integer 𝐵 satisfying the following pair 

of equations. 

𝑋2 = 𝐴𝑏𝑛 + 𝐵 ,  

Where, 0 < 𝐵 < 𝑏𝑛, 

                         𝐴 ≥ 0 & 𝑋 ≥  1                        (1) 

                           𝑋 = 𝐴 + 𝐵                                  (2)                                                                                                  

The second part 𝐵 in RHS of (2) must be non-zero. 

𝑋 = 1 is taken as a Kaprekar number for all 𝑛 ≥

1 , because 12 = 0 × 𝑏𝑛 + 1 ; 1 = 0 + 1 .Here 

𝐴 = 0 and 𝐵 = 1. 

The following is the sequence of 

Kaprekar numbers in base 10. 

1, 9, 45, 55, 99, 297, 703, 999, 2223, 

2728, 4879, 4950, 5050, 5292, 7272, 

7777, 9999, 17344, 22222,................ 

The following expansions show that the Kaprekar 

numbers satisfy the equations (1) and (2). 

12 = 1 = 0 × 102 + 1; 0 + 1 = 01  

mailto:mnarayanamurty@rediffmail.com
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92 = 81 = 8 × 101 + 1; 8 + 1 = 9  

452 = 2025 = 20 × 102 + 25; 20 + 25 = 45  

552 = 3025 = 30 × 102 + 25; 30 + 25 = 55  

992 = 9801 = 98 × 102 + 01; 98 + 01 = 99  

2972 = 88209 ; 88 + 209 = 297  

7032 = 494209 ; 494 + 209 = 703  

By extending the definition of Kaprekar numbers 

(1) and (2), the Kaprekar numbers can be 

expressed in binary form. The square of a kaprekar 

number in binary form can be found out with 

multiplier. The multiplication of binary numbers is 

used in the field of digital signal processing for the 

design of digital multipliers. The squaring 

operation also forms the backbone in 

cryptography. 

The rest of the paper is organized as follows. 

Kaprekar numbers in binary form are mentioned in 

Section 2. In Section 3, a multiplier circuit for 

squaring 2-bit kaprekar number is given. 

Algorithm for multiplying two kaprekar numbers 

in binary form is given in Section 4. Serial-parallel 

multiplier for multiplying two kaprekar numbers is 

mentioned in Section 5. Baugh-Wooley algorithm 

for multiplying kaprekar numbers is given in 

Section 6.  

 

2. Kaprekar Numbers in Binary form 

 

0 and 1 are called binary numbers. Computer 

circuits process binary numbers and they do not 

process decimal numbers. The basic rules of 

binary addition are 0 + 0 = 0;  0 + 1 = 1; 1 + 0 = 1; 

1 + 1 = 10; 10 + 1 = 11; 11 + 1 = 100.The rules for 

binary multiplication are 1×0 = 0, 0×1 = 0 and 1×1 

= 1. The following calculations using the rules of 

binary multiplication and addition for the 7 binary 

numbers   show that the square of a binary number 

can be split up into two parts, which add up to give 

the original binary number. Hence these binary  

numbers represent Kaprekar numbers with binary 

base 2. 

(a) 12 = 1 × 1 = 1 = 01; 0 + 1 = 1  

(b) 112 = 11 × 11 = 1001; 10 + 01 = 11  

(c)  1102 = 110 × 110 = 100100; 10 +

0100 = 0110 = 110  

(d)  1112 = 111 × 111 = 10001; 110 + 001 =

111  

(e)  10102 = 1010 × 1010 = 100100;  110 +

0100 = 1010  

(f) 11112 = 1111 × 1111 =

11100001;  1110 + 0001 = 1111  

(g) 111002 = 11100 × 11100 =

1100010000; 1100 + 010000 =

011100 = 11100  

The first 26 Kaprekar numbers in binary form are 

1, 11, 110, 111, 1010, 1111, 11100, 11111, 

100100, 110011, 111111, 1010101, 1011011, 

1111000, 1111111, 10001000, 10010011, 

10101011, 10111011, 11001101, 11111111, 

101010110, 101011111, 101101101, 111110000, 

111111111, .................. 

The following are three important aspects of 

kaprekar numbers in binary form. 

 Every even perfect number is a Kaprekar 

number in the binary base  𝑏 = 2.  

Example: An even perfect number in the binary 

base 𝑏 = 2  has the form 2𝑛−1(2𝑛 − 1) , where 

(2𝑛 − 1) is prime.  For 𝑛 = 3, we have 22(23 −

1) = 28. The binary equivalent of 28  is (11100)2, 

because 

                24 × 1 + 23 × 1 + 22 × 1 + 21 × 0 +

20 × 0 = 28  
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 (11100)2 is a kaprekar number in binary base as 

shown against the point (g) above. 

 𝑏𝑛−1(𝑏𝑛 − 1)  and 𝑏𝑛−1(𝑏𝑛 + 1)  are 

complementary Kaprekar numbers in the binary 

base 𝑏 = 2. 

Example: For 𝑏 = 2 and 𝑛 = 3, we get 

𝑏𝑛−1(𝑏𝑛 − 1) = 22(23 − 1) = 28 

and 

𝑏𝑛−1(𝑏𝑛 + 1) = 22(23 + 1) = 36. 

Already it has been shown that the number 28 in 

binary form is a Kaprekar number. The binary 

equivalent of the number 36 is (100100)2 because 
 

                 25 × 1 + 24 × 0 + 23 × 0 + 22 × 1 + 21 × 0 +

20 × 0 = 36   

𝑋 = 100100  is a Kaprekar number in binary 

form, because 𝑋2 can be split up into two parts  𝐴 

and 𝐵,  whose sum is equal to 𝑋  as mentioned 

below 

 𝑋2 = 1001002 = 1010001000 ;  10100(𝐴) +

010000(𝐵) = 100100(𝑋)   
 

Hence, (11100)2 and (100100)2 are 

complementary Kaprekar numbers in binary form. 

 For any Kaprekar number  𝑋1 =  𝑏𝑛−1(𝑏𝑛 − 1) 

with base 2, there exists another Kaprekar 

number   𝑋2 =  𝑏𝑛−1(𝑏𝑛 + 1) with base 2 such 

that 𝑋1 + 𝑋2 = 22𝑛. 

Example: let 𝑋1 =  𝑏𝑛−1(𝑏𝑛 − 1)  =28 for 𝑏 = 2 

and 𝑛 = 3. or 𝑋1 = (28)10 = (11100)2     

Similarly, let  𝑋2 =  𝑏𝑛−1(𝑏𝑛 + 1) = 36 for 𝑏 = 2 

and 𝑛 = 3. or 𝑋2 = (36)10 = (100100)2 

               𝑋1 + 𝑋2 = (11100)2 + (100100)2 =

(1000000)2  ⇒ (28)10 + (36)10 = (64)10 = 22𝑛        

for 𝑛 = 3. 

 

3. Multiplier for squaring 2-bit 

Kaprekar Number 

 Let the product of two 2-bit binary numbers 1 oa a  

and 1 ob b  is 3 2 1 oP P P P as shown in Fig.1. The 

hardware implementation for squaring 2-bit 

Kaprekar number is shown in Fig.2. It consists of 

four AND gates (1, 2, 3 & 4) and two half adders 

(HA-1 & HA-2). A half adder is a logic circuit that 

adds two binary digits and produces a 2-bit data, 

i.e., sum and carry. The 1st half adder is used to add 

1 oa b and 1oa b , the outputs of the 2nd and 3rd AND 

gates respectively. The 2nd half adder is used to add 

the carry 1c generated from 1st half adder and the 

output 𝑎1𝑏1 of the 4th AND gate. The output of 1st 

AND gate is oP . The sum of 1st half adder is 1P

and the sum of 2nd half adder is 2P  . The carry of 

2nd half adder gives 3P . 

For example, while squaring the Kaprekr 

number(11)2 , we have to take  𝑎0 = 1 ,𝑎1 = 1 , 

𝑏0 = 1  & 𝑏1 = 1  in the circuit shown in Fig.2. 

Then, we get 𝑝3 = 1 , 𝑝2 = 0 , 𝑝1 = 0  & 𝑝0 = 1 

as  112 = 11 × 11 = 1001 . Similarly, for 

squaring 3-bit Kaprekar number (110)2  or 

(111)2, a logic circuit containing 9 AND gates, 3 

Full Adders and 2 Half adders is required. 

                      𝑏1 𝑏0 × 𝑎1 𝑎0  

                                𝑎0𝑏1 𝑎0𝑏0  

                                                         

                   𝑎1𝑏1 𝑎1𝑏0  

           ------------------------------ 

            𝑝3 𝑝2          𝑝1      𝑝0 

            ----------------------------- 

Figure 1: Multiplication of two 2-bit binary 

numbers. 
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Figure 2. Block diagram of the multiplier for 

squaring 2-bit Kaprekar number 

4. Algorithm for multiplying two 

Kaprekar Numbers in Binary form 

The following algorithm [5] can be used for 

multiplying two positive or negative decimal 

numbers in binary form.  Consider two numbers 

A(m) = am-1,…, a0 and B(n) = bn-1, …, b0 

represented by m and n bits, respectively. The 

product of these numbers is given by. 

 P = A(m) B(n) 

In two’s complement, A(m) and B(n) can be 

represented as  

         A(m) =  






 
2

0

1

1 22
m

i

i

i

m

m aa                (3) 

and 

          B(n) =  
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0
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n

j

j

j

n

n bb            (4) 

Then the product of these two’s complement 

operands can be written as 

P = 
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1
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Using the relation 𝐶 + 𝐶̅ = 1  from Boolean 

algebra, we have 

P = )1(222 )1(
1
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0
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j
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−𝑎𝑚−1𝑏𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2𝑚+𝑛−2 + 2𝑚+𝑛−2 +

2𝑛−1 ∑ 2𝑖  𝑎𝑖𝑏𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅𝑚−2

𝑖=0 − 2𝑛−1 ∑ 2𝑖𝑚−2
𝑖=0  

    +2𝑚−1 ∑ 2𝑗  𝑎𝑚−1𝑏𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛−2

𝑗=0 − 2𝑚−1 ∑ 2𝑗𝑛−2
𝑗=0 +

∑ ∑ 2𝑖+𝑗𝑎𝑖𝑏𝑗
𝑛−2
𝑗=0

𝑚−2
𝑖=0                                     (5) 

The sum of 𝑛 terms in geometric progression 

is given by the formula  

  𝑆𝑛 = 1 + 𝑟 + 𝑟2 + 𝑟3 + ⋯ + 𝑟𝑛−1 =

  ∑ 𝑟𝑖𝑛−1
𝑖=0 =

1−𝑟𝑛

1−𝑟
                                          (6) 

Using (6), we have 

∑ 2𝑖𝑚−2
𝑖=0 =

1−2𝑚−1

1−2
= 2𝑚−1 − 1                (7) 

Similarly,  ∑ 2𝑗𝑛−2
𝑗=0 = 2𝑛−1 − 1                  (8)                                                         

Substituting (7) & (8) in 4th and 6th terms of 

(5), we obtain 

1 2 3 4 

o
p

1
p

2
p

3
p

oa

1a
ob
1b

o oa b1 oa b1oa b1 1a b

1c
HA-1 

HA-2 



Physics Education                                                                January – March 2020  

 

36/1/1                                                                  5                                                    www.physedu.in 

−2𝑛−1 ∑ 2𝑖𝑚−2
𝑖=0 − 2𝑚−1 ∑ 2𝑗𝑚−2

𝑗=0 =

−2𝑛−1(2𝑚−1 − 1) − 2𝑚−1(2𝑛−1 − 1)           

= −2𝑚+𝑛−2 + 2𝑛−1 − 2𝑚+𝑛−2 + 2𝑚−1       (9) 

Using (9) in (5), we get                

𝑃 =          ∑ ∑ 2𝑖+𝑗𝑎𝑖𝑏𝑗
𝑛−2
𝑗=0

𝑚−2
𝑖=0 +

                 2𝑛−1 ∑ 2𝑖𝑎𝑖𝑏𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅𝑚−2

𝑖=0 +

                 2𝑚−1 ∑ 2𝑗𝑎𝑚−1𝑏𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛−2

𝑗=0 −

                 2𝑚+𝑛−2𝑎𝑚−1𝑏𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 2𝑚−1 +

                 2𝑛−1 − 2𝑚+𝑛−2                            (10)     

                                                     

5. Serial - Parallel Multiplier for 

multiplying two Kaprekar Numbers 

in Binary form 

 

For m = n = 4, (10) can be written as 

 𝑃 = 20𝑎0𝑏0 + 21(𝑎1𝑏0 + 𝑎0𝑏1) 

        +22(𝑎2𝑏0 + 𝑎1𝑏1 + 𝑎0𝑏2) +

         23(𝑎3𝑏0
̅̅ ̅̅ ̅̅ + 𝑎2𝑏1 + 𝑎1𝑏2 + 𝑎0𝑏3

̅̅ ̅̅ ̅̅ )  

       +24(𝑎3𝑏1
̅̅ ̅̅ ̅̅ + 𝑎2𝑏2 + 𝑎1𝑏3

̅̅ ̅̅ ̅̅ + 1) +

        25(𝑎3𝑏2
̅̅ ̅̅ ̅̅ + 𝑎2𝑏3

̅̅ ̅̅ ̅̅ )  − 26(𝑎3𝑏3
̅̅ ̅̅ ̅̅ + 1)     (11) 

 The multiplication algorithm (11) resulting 

from (10) for a word length 4 is illustrated by 

the multiplication table shown in Table 1. The 

partial product terms are formed by ANDing 

each multiplicand bit with each multiplier bit. 

For two’s complement multiplication, one 

NAND and three AND operations are 

performed in each of the first three rows of the 

bit products, and four NAND operations in the 

fourth row. The final product is computed by 

adding ‘1’ to the fifth and the seventh columns 

along with all partial product terms. The 

excessive carry bit out of (2𝑛 − 1) = 7  bit 

product 𝑃6𝑃5𝑃4𝑃3𝑃2𝑃1𝑃0 is ignored. 

Fig.3 shows the steps of multiplication 

procedure for multiplying two Kaprekar 

numbers (110) and (111) in binary form using 

the multiplication algorithm (11). The decimal 

equivalent of (110) is 6 and that of (111) is 7. 

0’s are added to the left of these numbers to 

express them in 2’s complement form because 

−23 × 0 + 22 × 1 + 21 × 1 + 20 × 0 = 6 

−23 × 0 + 22 × 1 + 21 × 1 + 20 × 1 = 7 

 

The product is (0101010) and the excessive 

carry bits 10 out of this 7 bit product are 

ignored. The decimal equivalent of the product 

is 42 because 

−26 × 0 + 25 × 1 + 24 × 0 + 23 × 1 + 22 ×

0 + 21 × 1 + 20 × 0 = 42  

 

The 2’s complement serial - parallel multiplier 

[5] comprising of a logic unit and an adder unit 

is shown in Fig. 4. The logic unit consist of 

three AND gates, one NAND gate, and three 

XOR gates. In this multiplier A(m) is stored in 

parallel and B(n) is entered serially from the 

least-significant bit to the most-significant bit.  

A flip-flop (FF) saves the carry bit and a full 

adder adds the result of the partial product.  The 

output of the multiplier is obtained from the 

adder unit using a carry-save and add-shift 

technique (the CSAS technique) together with 

one control signal Q.  In the first three and last 

two clock cycles Q = 0, but in the fourth, fifth 

and sixth clock cycles Q =1.  The extra ‘1’ for 

the fifth and seventh columns are automatically 

provided by the control signal Q.  Four zeros 

are appended to the left of the MSB of B(n) for 

input / output synchronisation. The excessive 

carry bit out of (2n-1) bit product is ignored.  
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Table 1: 4 × 4 Bit two’s complement multiplication 

                  Multiplicand   b3 b2 b1 b0 

   Multiplier   a3 a2 a1 a0 

     
03ba  a2b0 a1b0 a0b0 

    
13ba  a2b1 a1b1 a0b1  

   
23ba  a2b2 a1b2 a0b2   

  
33ba  

32ba  
31ba  

30ba     

  1  1     

  P6 P5 P4 P3 P2 P1 P0 

 

   0 1 1 0 (6)           

   0 1 1 1 (7)           

   1 0 0 0            

  1 1 1 1             

 1 1 1 1              

1 1 1 1               

1  1                

0 1 0 1 0 1 0 (42)           

 

Figure 3: Steps for multiplication of Kaprekar numbers 110 & 111. 
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Figure 4: Serial-parallel 4-bit multiplier 

6. Baugh- Wooley algorithm for 

multiplying two Kaprekar numbers 

in binary form 

 

The following is the derivation of Baugh-

Wooley algorithm [1]. This algorithm can be 

used for multiplying two positive or negative 

decimal numbers in binary form. 

The product 𝑃  of two numbers 𝐴 =

𝑎𝑛−1 … 𝑎1𝑎0  and 𝐵 = 𝑏𝑛−1 … 𝑏1𝑏0  expressed 

in 2’s complement form is given by 

 𝑃 = 𝐴𝐵 = (−2𝑛−1𝑎𝑛−1 +

∑ 2𝑖𝑎𝑖
𝑛−2
𝑖=0 )(−2𝑛−1𝑏𝑛−1 +  ∑ 2𝑗𝑏𝑗

𝑛−2
𝑗=0 )   

= ∑ ∑ 2𝑖+𝑗𝑎𝑖𝑏𝑗 + 22𝑛−2𝑎𝑛−1𝑏𝑛−1

𝑛−2

𝑗=0

𝑛−2

𝑖=0

 

       −2𝑛−1𝑎𝑛−1 ∑ 2𝑗𝑏𝑗 −𝑛−2
𝑗=0

          2𝑛−1𝑏𝑛−1 ∑ 2𝑖𝑎𝑖
𝑛−2
𝑖=0                        (12) 

                                                                                                                                                      

Where 𝑛 is the number of bits in either of the 

numbers.Using the relation 𝐶 + 𝐶̅ = 1  from 

Boolean algebra in 3rd and 4th terms of (12), 

we get 

𝑃 = ∑ ∑ 2𝑖+𝑗𝑎𝑖𝑏𝑗 +𝑛−2
𝑗=0

𝑛−2
𝑖=0

22𝑛−2𝑎𝑛−1𝑏𝑛−1 + 2𝑛−1[∑ 2𝑗𝑛−2
𝑗=0 (𝑎𝑛−1𝑏𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅ −

1) + ∑ 2𝑖𝑛−2
𝑖=0 (𝑎𝑖𝑏𝑛−1

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 1)]                 (13) 

                                                                   

From (6), we obtain 

           ∑ 2𝑗𝑛−2
𝑗=0 = 2𝑛−1 − 1                  (14)                                                        

           ∑ 2𝑖𝑛−2
𝑖=0 = 2𝑛−1 − 1                   (15)  

Substituting (14) and (15) in (13), we have 

𝑃 = ∑ ∑ 2𝑖+𝑗𝑎𝑖𝑏𝑗 + 22𝑛−2𝑎𝑛−1𝑏𝑛−1

𝑛−2

𝑗=0

𝑛−2

𝑖=0

+ 2𝑛−1 [∑ 2𝑗

𝑛−2

𝑗=0

𝑎𝑛−1𝑏𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅

+ ∑ 2𝑖

𝑛−2

𝑖=0

𝑎𝑖𝑏𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅] 

                                    +2𝑛 − 22𝑛−1         (16)                                                                                
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Solving the Baugh- Wooley algorithm (16) for 

𝑛 = 4,  we obtain 

 𝑃 = −27 + 26𝑎3𝑏3 + 25(𝑎2𝑏3
̅̅ ̅̅ ̅̅ + 𝑎3𝑏2

̅̅ ̅̅ ̅̅ ) +

           24(𝑎1𝑏3
̅̅ ̅̅ ̅̅ + 𝑎2𝑏2 + 𝑎3𝑏1

̅̅ ̅̅ ̅̅ + 1) +

           23(𝑎0𝑏3
̅̅ ̅̅ ̅̅ + 𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎3𝑏0

̅̅ ̅̅ ̅̅ ) +

           22(𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0) +

           21(𝑎0𝑏1 + 𝑎1𝑏0) + 20𝑎0𝑏0         (17)                                

                                                                           

Bit-level Baugh-Wooley multiplication 

algorithm (17) for 𝑛 = 4 is shown Table 2. 

Table 2: Baugh- Wooley multiplication algorithm for 𝑛 = 4 

------------------------------------------------------------------------------------------------------------------- 

                                                                                                          
𝑎3

𝑏3
      

𝑎2

𝑏2
           

𝑎1

𝑏1
       

𝑎0

𝑏0
                                    

------------------------------------------------------------------------------------------------------------------- 

                                                                                 𝑎0𝑏3
̅̅ ̅̅ ̅̅ 𝑎0𝑏2     𝑎0𝑏1 𝑎0𝑏0 

                                                                                     𝑎1𝑏3
̅̅ ̅̅ ̅̅ 𝑎1𝑏2     𝑎1𝑏1 𝑎1𝑏0   

 

                                                                            𝑎2𝑏3
̅̅ ̅̅ ̅̅ 𝑎2𝑏2    𝑎2𝑏1 𝑎2𝑏0 

 

𝑎3𝑏3 𝑎3𝑏2
̅̅ ̅̅ ̅̅      𝑎3𝑏1

̅̅ ̅̅ ̅̅ 𝑎3𝑏0
̅̅ ̅̅ ̅̅  

 

                                            1                               1 

 

                                                    P7       P6        P5            P4         P3          P2          P1           P0 

............................................................................................................................................... 

The multiplication of two Kaprekar numbers 

(110) and (111) as per the algorithm (17) is 

given in Fig.5. This multiplication is done by 

making the substitutions 𝑎3 = 0, 𝑎2 =

1, 𝑎1 = 1, 𝑎0 = 0  and 𝑏3 = 0, 𝑏2 = 1, 𝑏1 =

1, 𝑏0 = 1 in Table 2. The excessive carry bits 

(10) out of the 7-bit product (0101010) are 

ignored. 

 

                                                                                    0 1     1 0      (6) 

                                                                                    0 1     1 1      (7) 

                                                                                    1 0     0 0 

        1 1     1 1 

                                                                      1 1     1 1 

                                                               0 1    1 1 

1 1  

 

............................................................................................................................................

                                                                0 1     0 1      0 1 0     (42) 

............................................................................................................................................ 

Figure 5: Steps for multiplication of Kaprekar numbers 110 &111 using Baugh-Wooley algorithm. 
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The Baugh-Wooley algorithm is a most popular 

algorithm in digital signal processing applications. 

The multipliers based on this algorithm are used for 

implementation of discrete orthogonal transforms 

like discrete Fourier transform (DFT), discrete 

Hartley transform (DHT) and discrete cosine 

transform (DCT). The algorithm discussed in 

Section-4 can also be used for realization of 

discrete orthogonal transforms. 
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Abstract

Arithmetic averaging and the least squares

method are often employed in experimental

physics. However, it is not fully understood that

the least squares method may provide inferior

estimates compared with the arithmetic mean.

We present a simple example for the estimation

of time periods, in which the least squares

method always provides a larger standard

deviation than arithmetic averaging.

1 Introduction

The measurement of time periods is an im-
portant subject in experimental physics, and
various experiments have been conducted
regarding this [1]. As an example, we con-
sider the measurement of the time period of
a stroboscope [2] using a stop watch. When
the strobe light glows, we start the watch,
and we stop the watch when the light ex-
tinguishes. We obtain the time period for
one cycle through this procedure. By re-

peating this procedure and calculating the
arithmetic mean, we obtain the best estimate
for the time period [3]. More simply, if the
times at which the light glows are recorded,
then the difference between successive times
gives the time period. When we plot the
time as a function of the number of mea-
surements, we will observe a linearly in-
creasing point sequence. Then, we apply the
least squares method to the measured data,
[4, 5, 6] and estimate the slope of the lin-
ear fitting function. Here, a natural question
arises: which of the arithmetic mean and the
least squares method is better for estimat-
ing the time period? The answer is clear,
the arithmetic mean is superior. However, it
is not easy to explain why the least squares
method is inferior, and to what extent it is.
In order to answer this question, we con-
sider the dependence of the standard devi-
ation of the obtained slope on the amount
of data. Before going into a detailed dis-
cussion, we emphasize that the least squares
method is very useful for analyzing experi-
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ments [7]. As example, we can estimate a
speed of a car moving at a constant speed
by applying the least squares methods to the
positions observed at regular time intervals.
A least squares fit provides a better estimate
than a simple arithmetic averaging in this
case. However, we must carefully use the
least squares method.

2 Mathematical model

We consider a stroboscope whose time pe-
riod τ obeys a probability density function
f (τ|µ, σ), with the mean time period µ and
standard deviation σ. The measurement be-
gins at time t = 0, and the time at which the
light illuminates is recorded n times. We de-
note the i-th time period by τi, and assume
that the sequence of time periods is statis-
tically independent. The time at which the
light is illuminated for the i-th time is ex-
pressed as

Ti =
i

∑
j=1

τj. (1)

Figure 1 shows an example of the time inter-
vals with n = 4, where the dashed line shows
the linear fitting function, T = ai.

For simplicity, we consider a linear
function through the origin. By applying the
least squares method to the measurement re-
sult, the slope a is given by

a({τi}) =

n

∑
i=1

iTi

n

∑
i=1

i2
. (2)

T1

T2

T3

T4

0 1 2 3 4 n

Τ4

Τ3

Τ2

Τ1

Figure 1: Plot of time when a strobe light glows.
The dashed straight line shows a linearly fitting
function.

Substituting (1) into (2), the slope a is ex-
pressed as

a({τi}) =
n

∑
i=1

ci,nτi, (3)

where

ci,n =
3(n + i)(n + 1− i)
n(1 + n)(1 + 2n)

. (4)

Accordingly, the ensemble average of the
slope 〈a〉 is given by

〈a({τi})〉 =
n

∑
i=1

ci,n〈τi〉. (5)

Using 〈τi〉 = µ and the equation

n

∑
i=1

cn,i = 1, (6)

we find that 〈a〉 is equal to µ. Thus, there
is no difference between arithmetic mean
and the slope obtained by the least squares
method for the estimate of the time period.
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Figure 2: Plot of n f (n) as function of the num-
ber of sample n, which exists between 1 and 6/5
= 1.2.

3 Variance and standard

deviation of the time period

Because we assumed that τi is independent,
the variance of the time period estimated us-
ing the arithmetic mean is given by〈(

µ− 1
n

n

∑
i=1

τi

)2〉
=

σ2

n
. (7)

Similarly, the variance of the time period es-
timated using the least squares method is
defined by

VL ≡ 〈(µ− a({τi}))2〉. (8)

Substituting (2) into (8), we obtain

VL = f (n)σ2, (9)

where

f (n) ≡ 6(1 + 2n(n + 1))
5n(n + 1)(2n + 1)

. (10)

The asymptotic behaviour of f (n) in the
limit of n→ ∞ can be expressed as

f (n) ≈ 6
5n

+O(n−2). (11)

Figure 2 shows n f (n), which converges to
6/5 in the limit n → ∞. We find that
the variance of the time period estimated
using the least squares method becomes
gradually worse as the amount of data in-
creases. However, it is bounded below 6/5n.
For large n, the standard deviation for the
time period obtained using the least squares
method is

σL ≈
√

6
5

σ√
n

. (12)

As a result, the standard deviation becomes
about 10% worse for large n.

4 Linear fitting with non-zero

intercept

In the Section 2, we used a linear function in-
tercepting the origin. We change the fitting
function. The slope A obtained by fitting the
data Ti (i = 1, . . . , n ≥ 2) to the function T =

Ai + B can be expressed as

A({τi}) =
n

n

∑
i=1

iTi −
n

∑
i=1

i
n

∑
i=1

Ti

n
n

∑
i=1

i2 −
(

n

∑
i=1

i

)2 . (13)

By substituting (1) into (13) and calculating
the ensemble average, we find that 〈A〉 =
µ. The variance calculated using the proce-
dures described in the Section 3 is given by

VG ≡ 〈(µ− A({τi}))2〉 (14)

= g(n), (15)

where

g(n) ≡ 6(n2 + 1)
5n(n2 − 1)

. (16)
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A comparison between ng(n) and n f (n) is
shown in figure 3. In contrast to n f (n),
the function ng(n) decreases as n increases.
However, ng(n) is greater than 6/5 for any
n. In particular, a large deviation is observed
for small n. In conclusion, the estimation of
the time period is not improved by general-
ising the fitting function.

æ
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Figure 3: Comparison between n f (n) (solid cir-
cle) and ng(n) (solid square).

5 Estimate of a time-dependent

period

We assumed that the time period is statisti-
cally independent. If a periodically chang-
ing signal is imposed on the time period,
then the above results will not necessarily
hold. For example, we replace the proba-
bility density function f (τ|µ, σ) with the fol-
lowing function depending on the parity of
the number of flashes:

F(τi|µ, σ) = f (τi|µ, σ) + (−1)iε, (17)

where ε > 0 is a constant and n is assumed
to be an even number. By using arithmetic

averaging, we have that

1
n

n

∑
i=1

τiF(τi|µ, σ) = µ. (18)

On the other hand, the slope obtained by fit-
ting to the linear function T = αi is given
by

〈α〉 = µ− 3n
2 + 6n + 4n2 ε. (19)

Therefore, we have different estimates. Be-
cause the time period cannot be charac-
terised by a single value, we cannot question
superiority of one method over the meth-
ods. However, it should be noted that not
only the variance, but also the ensemble av-
erage may differ.

6 Conclusion

Using spreadsheet applications makes it
easy to create graphs [8], and even the least
squares method can be easily applied. The
least squares method seems sophisticated
in comparison with the arithmetic mean in
some cases. However, as shown in this
study, the least square method may yield
inferior estimates. The reason for this can
be explained using equation (3). The left-
hand side of equation (3) indicates that the
slope is given by the weighted sum of τi. Be-
cause each measured value is independent
and obeys the same probability distribution
function, measured values should be treated
equally. However, the weight ci,n is a mono-
tonically decreasing function of i, so that the
measured values for small i have a large in-
fluence on the estimation of a. Although the
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least squares method is useful, we keep in
mind that it is not a tool that reduces uncer-
tainty.
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Abstract

We investigate the influence of the second

degree of freedom of a thread pendulum on the

deviations from simple pendulum model. It is

found that this factor has less but comparable

effect than the non-linearity of the oscillations,

especially at the low angular amplitudes for

which the experiments are usually performed.

Therefore, this correction should be added to

the set of corrections to the oscillation period of

simple pendulum while determining the precise

value of the local gravity acceleration.

1 Introduction

The scientific ideal physics models are one
of the most common classes of concepts,
which are considered in the high school
course of physics [1]. Among them the limit
transition abstractions play a key role, i.e.
the models constructed by limit transitions
for the selected number of characteristics to
their maximum, minimum or constant val-

ues [2]. For example, in the model of a rigid
body one approaches its hardness to infin-
ity. Within the model of an ideal gas the
molecule sizes and the values of interaction
forces between them are tended to zero. For
the model of uniform vector field its vector-
valued function is assumed to be indepen-
dent from the spatial coordinates, i. e. it
is constant in direction and modulus. Such
idealizations describe the behaviour of real
physical objects not only qualitatively but
also (most importantly) quantitatively.

The correctness of the applicability of
a particular model depends on the specific
physical situation itself and, strictly speak-
ing, should be determined by means of a
physical experiment. However, for educa-
tion purposes the accuracy of a model, i.e.
the errors arising as a consequence of ne-
glecting several factors considered to be in-
significant in the construction of the model
can be estimated theoretically within the ex-
tended model taking into account these ne-
glected factors.
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Let us consider as an example the
model of simple gravity pendulum. The
characteristic simplifications of such an ide-
alization are the following:

1) the amplitude of pendulum oscilla-
tions is small;

2) the buoyancy force acting on the bob
from a medium and its added mass [3] are
neglected;

3) the rod or cord on which the bob
swings is massless;

4) the rod or cord is inextensible;
5) the rod or cord always remains taut;
6) the bob is a point mass;
7) the support does not move;
8) the motion does not lose energy to

friction or air resistance;
9) motion occurs only in two dimen-

sions, i.e. in vertical plane.
It is well known that the period of os-

cillations of this pendulum is defined by the
following simple relation:

T0 = 2π

√
l
g

, (1)

where l is the rod length, g is the gravity
acceleration. The comprehensive analysis
of the corrections to Eq. (1) in the cases
of violation of the conditions (1-8) was pro-
vided in article [3]. However, no attempt
was made to investigate the influence of the
second degree of freedom on the period of
thread pendulum oscillations.

The condition (9) is important in the
practical use of a simple pendulum to de-
termine the gravity acceleration. The point

is that in the process of performing a labora-
tory experiment the thread pendulum oscil-
lations are not ”perfectly vertically flat” due
to the influence of random factors. Such a
motion of a bob is described by the model of
a spherical pendulum [4], which has two de-
grees of freedom. Consequently, the model
of a simple pendulum is the limiting case
of the model of a spherical pendulum. The
aim of the present article is the quantitative
analysis of the influence of the second de-
gree of freedom on the deviation of the pe-
riod of the spherical pendulum oscillations
from the period of the simple pendulum os-
cillations.

2 The spherical pendulum

The theory of a spherical pendulum is well-
developed ([5], [6]) and contains analytical
expressions for all quantities describing the
motion of such a system. Let l = OM =

const be the radius of the sphere on which
the point mass moves (the length of the sus-
pension). The OZ axis is directed vertically
downward from the center of the sphere
O. First, we assume that the pendulum is
deflected from this axis through the initial
angle θ0 (angular amplitude) and released
without the initial velocity in the vertical
plane. Without loss of generality we also
assume that at the instant of its release the
point mass was given some velocity ~υ0 in
the horizontal direction normal to the plane
passing through the OZ axis and the suspen-
sion. Then the trajectory of the point mass
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in the horizontal plane is the unclosed curve
(Fig. 1) close to the ellipse, which in its turn
rotates about the OZ axis in the direction de-
termined by the direction of the initial veloc-
ity ~υ0 [7].

Figure 1: The trajectory of the point mass
in the horizontal plane for the case of the
spherical pendulum.

Such a rotation of the plane of the spher-
ical pendulum oscillations of is much faster
than the Foucault precession and can be eas-
ily observed in the experiment. The trajec-
tory of the motion of this pendulum should
alternately touch two circles with radii R =

l sin θ0 and r = l sin θ1 (R > r) in points A,
B, C, D, E.... . Here θ1 < θ0 is the maximum

angle of the pendulum deflection from the
initial vertical plane.

In the theory of the spherical pendu-
lum [7] it is proved that the time interval be-
tween two consecutive contacts of the point
mass with these circles is constant and equal
to ∫ u1

u0

du√
F(u)

, (2)

where u = cos θ (u1 = cos θ1, u0 = cos θ0);
F(u) is the following cubic function of u (see
Eq. (16) in Ref. [8]):

F(u) =
8π2

T2
0
(u0 − u)[u2 + k(u + u0)− 1].

(3)
Here

k = 2
(

πυ0

gT0

)2

.

Equation F(u) = 0 has three following roots:
u0 and

u1,2 =
−k±

√
k2 + 4(1− ku0)

2
, (4)

which are found by solving the quadratic
equation corresponding to the square
bracket in Eq. (3) being zero. Roots u0

and u1 are the turning points [8], whereas
u2 < −1 has only formal sense (spurious
solution). Thereby, we can factor:

F(u) =
8π2

T2
0
(u− u0)(u1 − u)(u− u2).

Then, using Eq. (2), for the quasi-period of
the spherical pendulum oscillations we get:
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T = 4
∫ u1

u0

du√
F(u)

=

√
2

π
T0

∫ u1

u0

du√
(u− u0)(u1 − u)(u− u2)

.

Let us introduce the change of variable in the last integral: u = u0 + (u1 − u0) cos2 φ

(0 ≤ φ ≤ π/2). Then, finally we derive:

T =
2
√

2
π
√

u1 − u2
T0

∫ π
2

0

dφ√
1−m2 sin2 φ

=
2
√

2K(m)

π
√

u1 − u2
T0, (5)

where K(m) is the complete elliptic integral of the first kind [9] with elliptic modulus

m =

√
u1 − u0

u1 − u2
.

Since the experimentally observed values are angles θ0 and θ1 rather than k, we express root
u2 through the other two roots of cubic equation F(u) = 0. Using Eq. (4) we have:

k =
1− u2

1
u0 + u1

and

u2 =
1
2

− 1− u2
1

u0 + u1
−

√√√√( 1− u2
1

u0 + u1

)2

+ 4
u1 + u2

1u0

u0 + u1

 . (6)

For the very small angles θ0 and θ1

(u0,1 → 1, u2 → −1) we have: m→ 0. In this
case we can use the approximate expression
[9]

K(m) ≈ π

2

(
1 +

m2

4

)

and obtain

T ≈ T0

(
1 +

sin2 θ0 + sin2 θ1

16

)
. (7)

This expression is in accordance with Eq.
(26) of Ref. [6].

3 The numerical results and

discussion

Fig. 2 shows the results of numerical calcu-
lations of relative error εT = (T − T0)/T,
depending on angle θ0, based on Eqs. (5),
(6) at different values of θ1. It is seen that
taking into account non-zero value of θ1 will
increase the period of pendulum oscillations
(this result follows even from Eq. (7)). Since
at θ1 = 0 Eq. (5) gives ones the value of the
period of non-linear oscillations of simple
pendulum, we are able to compare the de-
viations from simple pendulum model due

36/1/3 4 www.physedu.in



Physics Education January - March 2020

Figure 2: Dependence εT(T) at the angles:
1) θ1 = 0; 2) θ1 = 3◦; 3) θ1 = 5◦.

to the non-linearity and the presence of the
second degree of freedom. We come to the
conclusion that the second factor has less
but comparable effect than the first one, es-
pecially at low angles of θ0 for which the
experiments are usually performed. There-
fore, this correction should be added to the
set of corrections [3] to the oscillation period
of simple pendulum while determining the
precise value of the local gravity accelera-
tion.
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Abstract

The incompatibility between Larmor’s formula

for radiation losses (at a rate proportional to

square of the acceleration of the electric charge)

and the radiation reaction (the rate of loss of

momentum of the accelerated charge propor-

tional to its rate of change of acceleration)

has recently been shown to arise because a

proper distinction is not kept between radiation

losses calculated in terms of a retarded time

and those expressed in terms of a “real time”.

However, the occurrence of this disparity

between two formulations is usually reconciled

in literature by proposing an acceleration-

dependent term, called Schott energy, lying

somewhere in the nearby electromagnetic fields

of an accelerated charge. But nobody has

yet unambiguously demonstrated where the

Schott energy, if any, actually lies in the fields.

By scrutinizing electromagnetic fields of a

uniformly accelerated charge, a mathematically

tractable case, we show that contrary to the

ideas prevalent in the literature, there is no

evidence of any acceleration-dependent Schott

energy-momentum in the electromagnetic fields,

anywhere in the near vicinity of the charge or

elsewhere. Accordingly, we expose the fallacy

of this elusive Schott energy-momentum term,

which should henceforth be abandoned, in the

electromagnetic radiation formulation.

1 Introduction

According to Larmor’s formula (or its rel-
ativistic generalization, Liénard’s formula),
electromagnetic power is radiated from an
accelerated charge at a rate proportional to
square of its acceleration [1, 2, 3, 4]. From
that one can also infer the rate of momen-
tum carried by the electromagnetic radia-
tion which turns out to be directly propor-
tional to the velocity vector of the charge
multiplied by square of its acceleration [5, 6].
The picture here does not seem to be com-
plete however, because if one attempts to
compute the consequential rate of energy-
momentum loss from the radiating charge,
one encounters not only a direct violation
of the energy-momentum conservation law
but also sees a conflict with the special the-
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ory of relativity [7].

Abraham [8, 9] and Lorentz [10, 11] de-
rived for an accelerated charge, a formula
for the self-force, widely known as radia-
tion reaction, which gives the rate of loss of
momentum of the accelerated charge pro-
portional to its rate of change of accelera-
tion [12, 13, 14, 15]. The same formula is
also obtained, independently, from momen-
tum conservation law by using the Maxwell
stress tensor to calculate the rate of electro-
magnetic momentum flow across a spherical
surface surrounding the neighbourhood of a
point charge [16]. A scalar product of the
radiation reaction with the velocity of the
charge yields the rate of power loss of the
accelerated charge. The radiative power loss
can also be obtained directly from the Poynt-
ing flux in the neighbourhood of a point
charge in arbitrary motion, leading exactly
to the same formula [17].

The disparity between the two power
loss formulas (one proportional to the
square of acceleration and the other propor-
tional to the scalar product of the velocity
and the rate of change of acceleration of the
charge), has remained a nagging puzzle for
almost a century. However, recently it has
been explicitly shown that this well-known
incompatibility in the two formulas is suc-
cinctly resolved when a proper distinction is
made between radiation losses expressed in
terms of a retarded time and those expressed
in terms of a “real time” [18]. Further, from
an examination of the electromagnetic fields
of a uniformly accelerated charge, it was

demonstrated why no radiation occurs in
the case of such a charge [19]. It so happens
in this case, at all distances r from the charge,
the acceleration fields (∝ a/cr) strangely get
cancelled by a transverse term of the ve-
locity fields (∝ v/r2). This is because in
the case of a uniform acceleration, the time-
retarded value of velocity, computed for a
time interval r/c earlier, has an acceleration-
dependent component (∝ −ar/c); the result-
ing term in velocity fields cancels the ac-
celeration fields for all r. Consequently, no
electromagnetic radiation will be detected
by any observer from a uniformly acceler-
ated charge, even in the far-off zone. This
of course, contradicts Larmor’s formula, ac-
cording to which a uniformly accelerated
charge would radiate power at a constant
rate, proportional to the square of its acceler-
ation. On the other hand, the absence of ra-
diation from such a charge is in concurrence
with the absence of radiation reaction in this
case since the rate of change of acceleration
of the charge here is nil.

Nevertheless, according to the conven-
tional wisdom, the radiative power loss is
believed to be given correctly by Larmor’s
formula, while at the same time, the rate
of loss of momentum is thought to be de-
scribed correctly by the radiation reaction
formula, and these two apparently conflict-
ing formulations are reconciled by propos-
ing the presence of an extra term, called
Schott term [12], in the fields of an accel-
erated charge. However, a physical mean-
ing of this acceleration-dependent Schott
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term is still eluding [6, 20, 21, 22, 23, 24,
25] and one does not encounter such an
acceleration-dependent energy-momentum
term elsewhere in physics.

The Schott energy-momentum is
thought to be present in the electromag-
netic fields in the vicinity of an accelerated
charge. From the differences in the two con-
flicting formulas, we shall first arrive at the
expression for the Schott term in a 4-vector
form. Thereafter we shall examine the case
of a uniformly accelerated charge, where
the expression for the electromagnetic
fields is relatively simple and the Schott
term, if present therein, should be tractable
mathematically in an exact manner. From a
careful scrutiny of the electromagnetic fields
of such an accelerated charge, we explore
whether there really is some evidence of
the Schott energy-momentum term in the
vicinity of the charge as postulated in the
literature, or is it merely an assertion based
on fallacious arguments.

2 Larmor’s/Liénard’s radiation

formula

According to Larmor’s radiation formula,
the radiative power loss for an accelerated
charge in an inertial frame S ′, in which the
charge is moving with a non-relativistic ve-
locity (v′ � c), is [2, 3, 4]

P ′1 =
2e2v̇′2

3c3 . (1)

Throughout, a prime (’) over a quantity in-
dicates its value in frame S ′, where the mo-

tion of the charge is non-relativistic, in order
to distinguish from its value in a relativistic
formulation, elsewhere.

However, the consequential net rate of
momentum loss to Larmor’s radiation by
such a charge is nil

F′1 = 0 . (2)

This is because the radiation pattern pos-
sesses an azimuth symmetry (∝ sin2 φ) in
the case of a non-relativistic motion [2, 3, 4].

For a relativistic motion, the rate of
energy-momentum loss of an accelerated
charge due to radiation damping can be ex-
pressed in a 4-vector form as

Fµ
1 =

2e2

3c5 v̇αv̇αvµ , (3)

where in all covariant equations, dot repre-
sents a proper time derivative [6].

The time part, F 0
1 , is γP1/c, where

P1 =
2e2

3c3 v̇αv̇α =
2e2γ4

3c3

[
v̇ · v̇ +

γ2(v̇ · v)2

c2

]
(4)

is Liénard’s formula (in cgs units) for power
being lost by a radiating charge [2, 3, 4] in
say, frame S , where the velocity v of the
charge may be relativistic, while the space
part, F i

1, is γ times the ith component, for
i = 1, 2, 3, of the rate of momentum being
lost in frame S into radiation [5, 6]

F1 =
P1

c2 v . (5)
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3 Abraham-Lorentz radiation

reaction

Larmor’s formula purportedly uses Poynt-
ing’s theorem of energy conservation to re-
late Poynting flux through a spherical sur-
face of radius r at a time t, to the rate of loss
of kinetic energy of the radiating charge at
a retarded time t− r/c. However, in Poynt-
ing’s theorem all quantities are supposed to
be calculated for the same instant of time
[2, 3, 4]. A correct application of the Poynt-
ing’s theorem, using real-time values of the
charge motion, gives instantaneous power
loss of the charge in frame S ′, where the mo-
tion of the charge is non-relativistic, as [17]

P ′2 = −2e2

3c3 v̈′ · v′ . (6)

Similarly the electromagnetic momen-
tum flow across a surface surrounding the
vicinity of a point charge, computed em-
ploying the Maxwell’s stress tensor, yields
a rate of loss of mechanical momentum of the
charge in frame S ′ as [16]

F′2 = −2e2

3c3 v̈′ . (7)

Equation (7) is the famous Abraham-
Lorentz radiation reaction formula, derived
usually in a quite involved way by com-
puting the net self-force on the accelerated
charge [8, 9, 10, 11, 12, 13, 14, 15]. For this
one considers the charge to be in the shape
of a small spherical shell and the force on
every tiny bit of the shell, due to the time-
retarded fields of the rest of the shell charge

distribution, is calculated and then the to-
tal force is calculated by summing over the
whole spherical shell. But the same result
now has been obtained in an independent
manner from the momentum conservation
theorem [16].

A relativistic generalization of Eq. (6)
yields the instantaneous power loss of the
charge in frame S [15, 16]

P2 = −2e2γ4

3c3

[
v̈ · v +

3γ2(v̇ · v)2

c2

]
, (8)

while a relativistic generalization of Eq. (7)
gives the rate of loss of mechanical momen-
tum of the charge in frame S as [14, 15, 16]

F2 = −2e2γ2

3c3

[
v̈ +

γ2(v̈ · v)v
c2

+
3γ2(v̇ · v)v̇

c2 +
3γ4(v̇ · v)2v

c4

]
. (9)

We can express Eqs. (8) and (9) in a 4-
vector form Fµ

2 , where

F 0
2 =

γP2

c
, (10)

F i
2 = γFi

2, i = 1, 2, 3 . (11)

4 Schott energy-momentum term

Power loss by the charge due to radiation
reaction (Eq. (6)), is related to the radi-
ated power by Larmor’s formula (Eq. (1)) in
frame S ′, i.e., for a non-relativistic motion,
as

P ′2 = P ′1 −
2e2

3c3
d(v̇′ · v′)

dt
. (12)

The last term on the right hand side in
Eq. (12) is known as the Schott term, af-
ter Schott [12] who first brought it to at-
tention. Schott term is a total derivative
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and is thought in literature to arise from
an acceleration-dependent energy, −2e2(v̇′ ·
v′)/3c3, in electromagnetic fields [20, 21, 22,
23, 24, 25].

We can also express F′2 in terms of F′1
(Eqs. (7) and (2)), again in frame S ′ for a non-
relativistic case, as

F′2 = F′1 −
2e2

3c3 v̈′ . (13)

The last term on the right hand side,
again, is a total derivative, assumedly aris-
ing from an acceleration-dependent mo-
mentum, −2e2v̇′/3c3, apparently in electro-
magnetic fields.

Radiation reaction in the covariant form
[26] yields a 4-vector, Fµ

s , for the Schott term

Fµ
2 = Fµ

1 +Fµ
s = Fµ

1 −
2e2

3c3 v̈µ . (14)

Fµ
s is a proper-time derivative of the Schott

energy-momentum, Eµ
s = −2e2v̇µ/3c3. The

4-acceleration v̇µ is obtained from the 4-
velocity (γc, γv) by a differentiation with
proper time and the 4-vector Eµ

s then is

E0
s = −2e2γ4

3c4 v̇ · v, (15)

E i
s = −2e2γ2

3c3

[
v̇i +

γ2(v · v̇)vi

c2

]
. (16)

Equation (14) can now be explicitly verified
by a proper-time differentiation of Eµ

s , in
conjunction with Eqs. (4), (5), (8) and (9), to
give

F 0
s = −2e2

3c3 v̈0 =
γ(P2 −P1)

c
, (17)

F i
s = −

2e2

3c3 v̈i = γ(Fi
2 − Fi

1) . (18)

It may be noted that in case of radiation
reaction, power and force (Eqs. (8) and (9))
are related by P2 = F2.v, implying

F 0
2 =
F i

2vi

γc
, (19)

where vi (i = 1, 2, 3) stands for ith compo-
nent of the 4-velocity. In contrast, the re-
lation between force and power in case of
Larmor’s radiation formula, F1 = P1v/c2

(Eq. (5)), implies

F 0
1 6=
F i

1vi

γc
. (20)

Also

F 0
s 6=
F i

svi

γc
, (21)

because

v̈0 =
(v̈ivi + v̇µv̇µ)

γc
. (22)

An uncomfortable question in Larmor’s
radiation loss formula arises in case of an
accelerated charge in its instantaneous rest
frame. Due to zero velocity of the charge,
it could not lose any kinetic energy into ra-
diation. However, Larmor’s formula, ac-
cording to which the radiated power is pro-
portional to square of acceleration of the
charge, yields a finite power loss. Even if
the external force causing the acceleration of
the charge, were considered to be responsi-
ble for the radiative power as well, it could
not have done so, because at that instant
the rate of work being done by the external
force would also be zero as the system has
a zero velocity. This embarrassing question
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is purportedly resolved by proposing that
there is an equivalent decrease in the Schott
energy (an acceleration-dependent internal
energy!) stored within the electromagnetic
fields in the close vicinity of the accelerated
charge. According to this argument, even
if the Schott energy term may be zero in
the instantaneous rest frame (Eq. (15)), its
temporal derivative (Eq. (17)) yields a fi-
nite power loss for the instantly stationary
charge equal to that expected from Larmor’s
formula (Eq. (1)).

However, even if this might seem to
resolve the particular energy conservation
problem, it gives rise to another awkward
question about the presence of momentum
for an instantly stationary charge. From
Eq. (16) we infer that there is a finite momen-
tum, −2e2v̇′/3c3, in electromagnetic fields
in the vicinity of the charge, even at the in-
stant when the charge is stationary (v′ = 0).
Now this apparent momentum, which is di-
rectly proportional to the acceleration of the
charge, and is strangely independent of the
velocity of the charge, at least in the non-
relativistic case, raises a vexing question –
How come there is supposedly a finite mo-
mentum in the fields of a stationary charge
when there is no motion of any kind at that in-
stant?

We shall here endeavour to verify this,
apparently an ad hoc, and to an extent
even paradoxical but nonetheless widely-
believed, assumption of the presence of
acceleration-dependent Schott terms in elec-
tromagnetic fields of an accelerated charge.

For this, we will carefully scrutinize the case
of a uniformly accelerated charge, where it
may be possible to tract the question in ex-
act mathematical details whether the elec-
tromagnetic fields really harbour the Schott
energy-momentum, somewhere in the close
vicinity of such a charge (or even else-
where), as opined in the literature [22, 23].

5 Electromagnetic fields around

the “present” position of a

uniformly accelerated charge –

no trace whatsoever of Schott

energy-momentum anywhere

A uniformly accelerated motion is under-
stood to imply a motion with a constant
proper acceleration, say, g. For simplicity,
we may assume a one-dimensional motion,
v ‖ g, since, using a Lorentz transformation,
we can always switch to an appropriate iner-
tial frame in which the velocity component
perpendicular to the acceleration vector is
zero. In fact, at any given event, transform-
ing to the instantaneous rest frame guaran-
tees that for a constant proper acceleration
the motion will be along one dimension.

In the case of a uniform proper acceler-
ation g, Schott term, Fµ

s is the 4-vector

F 0
s = −2e2

3c4 γg2, (23)

F i
s = −2e2

3c5 γg2vi, i = 1, 2, 3 , (24)

while from Eqs. (15) and (16), the Schott
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energy-momentum 4-vector Eµ
s is given by

E0
s = −2e2

3c4 γg · v, (25)

E i
s = −2e2

3c3 γ gi, i = 1, 2, 3 . (26)

As it was mentioned earlier, this Schott
energy-momentum is thought to be present
in the electromagnetic fields in the near
vicinity of an accelerated charge.

In order to explore the electromagnetic
fields around the charge in its neighbour-
hood, we could attempt to express fields at
a time t with respect to the position and mo-
tion of the charge also at the same instant
t. It may not be quite feasible to do so for
an arbitrary motion of the charge. However,
for a uniformly accelerated charge, it is pos-
sible to solve the expression for electromag-
netic fields not necessarily in terms of mo-
tion of the charge at retarded time, instead
wholly in terms of the “real-time” motion of
the charge [27].

We assume that the constant proper ac-
celeration vector, g (= γ3v̇), is along the
+z axis and that the charge, coming from
z = ∞ at time t = −∞, initially moves
along −z direction, getting constantly de-
celerated till it comes to rest momentarily
at a point z = α at time t = 0, and then
onwards moves with an increasing speed
along the +z direction. Without any loss of
generality, we can choose the origin of the
coordinate system so that α = c2/g, then
the position and velocity of the charge at a
time t are given by zc = (α2 + c2t2)1/2 and
β = v/c = ct/zc. The charge happens to

be at the same point on the z-axis at times
−t and t, but with velocity in opposite di-
rections, i.e., β(t) = −β(−t)

The expression for electromagnetic
fields of such a charge [28], in a spherical
coordinate system (r, θ, φ) with origin at the
instantaneous charge position [29], is

Er =
e(1+η cos θ)

r2γ2(1+2η cos θ+η2−β2 sin2 θ)3/2

Eθ =
eη sin θ

r2γ2(1+2η cos θ+η2−β2 sin2 θ)3/2

Bφ = eβ sin θ

r2γ2(1+2η cos θ+η2−β2 sin2 θ)3/2 , (27)

with η = gr/2γc2. All the remaining field
components are zero.

Since the magnetic field Bφ has linear
dependence on β (Eq. (27)), therefore at any
given location (r, θ, φ), Bφ(t) = −Bφ(−t).
On the other hand, the electric field compo-
nents Er, Eθ do not have such linear depen-
dence on β and E(t) = E(−t).

From Eq. (27) we can infer the follow-
ing:
(i) For g = 0, η = 0 and in that case
the fields reduce to that of a charge mov-
ing with a uniform velocity β, with the elec-
tric field everywhere in a radial direction
from the present position of the charge with
B = β× E [2, 3, 4].
(ii) For a finite g (η 6= 0), the radial
component of the Poynting vector, Sr =

c(EθBφ)/4π, at any time t < 0, when the
charge is getting decelerated, is everywhere
(i.e., at any field point r, θ, φ) pointing inward,
toward the present position of the charge.
(iii) At t = 0, β = 0, implying B = 0 ev-
erywhere. Thus there is no Poynting vector
seen anywhere at t = 0.
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(iv) At time t > 0, when the charge is accel-
erating, the radial component of the Poynt-
ing vector is everywhere pointing away
from the present position of the charge. In
fact, everywhere the Poynting vector at time
t1 is equal and opposite to that at time −t1,
for all t1 values.

The electromagnetic field energy in a
volume V is given by the volume integral

1
8π

∫
V

dV (E2 + B2) . (28)

The field energy density, (E2 + B2)/8π, be-
ing equal at times t1 and −t1, its volume
integral over any chosen V , whether in the
vicinity of the charge or in some far-off zone,
is also equal at times t1 and −t1. Now, the
acceleration-dependent Schott energy term,
according to Eq. (25), is equal but opposite
at t1 and −t1 (because v = −c2t1/zc at −t1).
Thus the Schott energy should be making
a positive contribution at −t1 and a nega-
tive contribution at t1, which is not consis-
tent with the fact that the actual field energy,
computed from Eq. (28), is identical at t1 and
−t1.

One can also compute the electromag-
netic field momentum contained within a
volume V from

1
4πc

∫
V

dV (E× B). (29)

Since B = 0 at t = 0 (Eq. (27)), there is
no momentum in the electromagnetic fields
anywhere, whether in the vicinity of the
charge or in the far-off regions, in the in-
stantaneous rest frame. Therefore Eq. (26)

is clearly violated where the Schott momen-
tum is proportional to −g even at t = 0,
when the charge is instantly stationary.

Further, for t 6= 0, from Eq. (29) in
conjunction with Eq. (27), the electromag-
netic field momentum at times t1 and −t1

is not only equal but in opposite directions;
it being directly proportional to the instan-
taneous velocity β. Now, this again is not
in agreement with Eq. (26), where at times
t1 and −t1, not just the magnitude but also
the direction of the Schott momentum vec-
tor should remain the same, being directly
proportional to the acceleration g but oppo-
site in direction to g, unlike the electromag-
netic field momentum which is not only di-
rectly proportional to the instantaneous ve-
locity β, but also in same direction as β. In
fact, a finite Schott momentum for an accel-
erated charge in its instantaneous rest frame,
as inferred from Eq. (26), would from the
strong principle of equivalence [30] imply a
finite momentum 2e2g/3c3 associated with
a charge that is continually at rest in a grav-
itational field of strength g, an unpalatable
inference for an otherwise completely static
system.

Thus we find no signature of the
acceleration-dependent Schott energy-
momentum terms that were in accordance
with Eqs. (25) and (26). We may add here
that the introduction of the Schott energy
term to account for the power loss into
radiation but without any equivalent rate
of decrease of kinetic energy of the radiat-
ing charge, say, in the instantaneous rest
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frame, is akin to the proposal of the loss of
internal (rest mass!) energy [31] without a
loss of momentum (c.f. Eqs. (1) and (2)).
However, in the case of Scott energy it is
thought to be an acceleration-dependent
extraneous kind of energy (neither the rest
mass energy nor the kinetic energy, not
even some kind of potential energy that
may depend upon location in an external
field) present in the electromagnetic fields
and which does not seem to make an ap-
pearance elsewhere in physics. In any case,
we see no evidence of the presence of such
an energy term in the fields of a uniformly
accelerated charge. Actually it has recently
been shown that the Schott term is merely
a difference in rate of change of energy in
self-fields of the charge between retarded
and real times [18, 32, 33]. and contrary to
the ideas that have been proposed in the
literature [6, 20, 21, 22, 23, 24, 25], there is no
acceleration-dependent extra energy term
lurking somewhere in the electromagnetic
fields whether in the near vicinity of the
charge or elsewhere.

6 Conclusions

From the difference between Lar-
mor’s/Liénard’s radiation formula and
Abraham-Lorentz radiation reaction for-
mula, we arrived at the expression for
Schott energy-momentum for an acceler-
ated charge. We demonstrated that in the
electromagnetic fields of a uniformly accel-
erated charge there is no evidence, what-

soever, of the Schott energy-momentum
terms, whether in the near vicinity of the
charge or elsewhere. The presence of such
terms would have been, even otherwise, in
conflict with the strong principle of equiv-
alence as one would then infer from them,
among other things, a finite momentum
for a charge continually at rest in a gravita-
tional field, an unpalatable inference for an
otherwise completely static system. Since
the difference between two formulations is
resolved when a proper distinction is made
between radiation losses calculated in terms
of a retarded time and those expressed in
terms of a “real time”, the proposition of
the elusive Schott energy-momentum terms
in fields is superfluous and needs to be
abandoned.
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Abstract 
The efficiency is the most important feature in 
solar cell performance. In recent years III-V multi-
junction solar are much popular among all solar 
cells due to their high energy conversion ratio or 
efficiency. There are some major ways to improve 
efficiency in multi- junction solar cells. The solar 
cells have different combination of sub cell band 
gaps. The design optimizations of each sub cells for 
spectral radiance of a particular region can result 
in improve solar cell performance. In multi-
junction solar cells, using nanotechnology to carry 
out band gap engineering provides better 
matching to the solar spectrum and enables 
improved the current matching for better 
efficiency. The multi-junction solar cells are 
applicable in space applications and they are very 
expensive in cost. The new technology named 
concentrator photovoltaic overcomes these issues 
in multi-junction solar cells which is also 
economically viable. The concentration ratio 
improves the performance of photovoltaic cell 
even more. Semiconductor materials properties 
allow solar cells to operate more efficiently in 
concentrated light, as long as the cell junction 
temperature is kept cool by suitable heat sinks. 
 

 

 

1. Introduction 
Sufficient and secure energy sources are the main 

need of social and economic development of 

society. Energy sources may classify in two major 

categories one is conventional energy sources and 

other is renewable energy sources. The 

conventional energy sources are mainly depended 

on cow dung cakes, wood, fossil fuels such as oil, 

natural gases and coal. These sources have been 

utilized for centuries to power generation and 

industries. These all energy sources are very 

popular among all but unfortunately these all 

sources of energy are limited. In next two decades, 

the conventional sources of energy are subject to 

depletion that’s why the whole world looking 

forward for renewable energy sources. Renewable 

energy sources are also called unconventional 

energy sources. They are clean, eco-friendly and 

inexhaustible. There are so many forms of 

renewable sources of energy like wind energy, 

hydro energy, ocean energy, tidal energy, 

geothermal energy and solar energy. In the last few 

decades, we have been seen unpredictable changes 

in the consumption of energy resources. When we 

talk about India, the power sector is mainly 

dominated by fossil fuel especially by coal. The 

recent study shows that in 2014, India is the 4th 
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largest energy consumer (7,124.002 TWh) and 5th 

largest energy producer (4547.946 TWh) in the 

world[1]. Indian government is pushing an 

increased investment in renewable energy. 

Renewable energies are playing key role in new 

global energy strategy. It gives the independence 

from conventional energy source among all 

renewable energy hydro power, wind power, 

biomass and solar energy appear the most 

promising. Despite all of these approaches to 

renewable energies still have deficiency of that 

limit their ability to stabilize global climate. 

Utilization of the power of sun light is certain one 

of the most viable way to solve the foreseeable 

world’s energy crisis [2]. Solar energy is the 

cleanest, echo friendly, non-toxic source of energy. 

Solar energy, mostly classified in two techniques: 

passive solar energy technique and active solar 

technique. A passive solar technique used in 

building design orientation to provide electricity, 

mechanical power, heat and lighting through the 

sun and active solar technique used photovoltaic 

system, concentrating solar system [3]. In all these 

techniques photovoltaic system is the most useful 

and promising technique for the future. 

As the name referred photovoltaic is the 

combination of two words Photo means light and 

voltaic means voltage. So we can say that light can 

be used for creating voltage or electricity. The 

photovoltaic system is the arrangement or the 

combination of different components, including the 

solar panels. 

A solar panel or solar module is the most important 

component of the photovoltaic system. The solar 

panel is the device which converts light into 

electricity. The solar panel is the bunch or 

collection of solar cells. The large number of small 

solar cells spread over a large sheet is called a solar 

panel. Solar panel used photons (light energy) from 

the sun to generate electricity. Solar cells are 

connected one to another electrically in series or in 

parallel pattern, externally. The parallel connected 

panel gives the desired current while in series 

connected solar panel provide the desired voltage. 

Some special photovoltaic module used 

concentrator that means light focused on small 

photovoltaic cell through lenses or mirrors. If we 

talk about its maintenance or wear-and-tear, solar 

panels are very hardy [4]. There are two types of 

approaches used in solar panel configuration: stand 

alone and grid connect interface. 

 

2. Background or History of Solar Cells- 

The concept of Photovoltaic cell firstly came in 

light in 1839 when A.  E. Becquerel at the age of 

19 discovered the Photovoltaic effect in his father’s 

lab. He observed while experimenting with solid 

electrodes in an in an electrolyte solution, a voltage 

develops when light fell upon the electrodes 

[5].The first genuine solar cell was developed by 

Charles E. Fritts, who used to junction in the 

coating of selenium with the thin layer of gold [6]. 

The first solar cell demonstration and press release 

is shown in FIG (1). This cell achieved the 

conversion efficiency of 1-2%. After that selenium 

is the subject of discovery in the field of solar cells 

development, but in 1946, an American physicist 

Russel Ohl from Bell Laboratory, developed a p-n 

junction semiconductor silicon solar cell [7]. After 

that silicon is being the most promising and 

effective material in solar cell formation. In 1954, 

the three researcher Gordon Pearson, Calvin Fuller 

and Darryl Chapin from the same laboratory 

developed first silicon based solar cell with 

achieving 6% of conversion efficiency [8]. They 

created an array of several strips of silicon based 

solar cells [9-10]. At that time the word solar panel 

came in trend. 

After this revolutionary discovery researcher were 

keenly interested in solar cell development with 



Physics Education                                                                       January – March 2020  

 

36/1/5                                                                       3                                                     www.physedu.in 

various materials and junctions. There are three 

main generations of solar cells mentioned in the 

TABLE (1). 

As per given table it is clear that third generation 

solar cells having more possibilities in the field of 

energy improvement. Traditional solar cells are 

having limitations like key ingredient Si has 

become more expensive, which can’t reduce the 

solar cell cost. Also, Si has other physical 

limitations that’s why to overcome these issues 

physicist, developed other optical active materials 

which makes solar cells more effective, but they are 

less popular in comparison to conventional Si solar 

cells. Third generation Photovoltaic cells are 

designed to combine the advantages of both first 

and second generation solar cells. This paper 

mainly focuses on the attempts to improve 

efficiency of multi-junction solar cells above the 

Shockley-Queisser efficiency limit and 

combination of semiconductor material to more 

efficiently capture a target range of photon. Multi-

junction solar cells have the highest theoretical 

limit of conversion efficiency as compared to other 

photovoltaic technologies [11-13]. Before we talk 

about the fundamentals of multi- junction solar cell 

we should know about some basics of solar cells. 

Features First generation Second generation Third generation 

 

Technology 

 
 

Stability 

Efficiency 

Toxicity 

Production Cost 

 

Market Share 

(Commercially) 

 

Examples 

 

Silicon wafer based 

 
 

Stable 

Efficient 

Non-Toxic 

Costly 

 

Very big share 

 
 

Mono crystalline, 

Polly crystalline Si 

based Solar cells 

 

Thin film based 

 
 

Less Stable 

Less Efficient 

Highly Toxic 

Cheaper than 

previous generation 
 

Small 

 
 

CdTe, CGIS, CIS, 

CZTS, a-H Si based 

solar cells 

 

Multi-layer or 

tandem 

 

Less Stable 

High Efficient 

Toxic 

Cheaper than 

previous one 
 

Very small 

 
 

Organic, Quantum 

Dots, Perovskite, 

dye-sensitizer and 

multi-junction 
 

Table (1) Featuring all three generations merits and demerits 

 

 

The behavior of a solar cell is represented by the 

current-voltage curve (I-V curve). The solar cell 

performance depends upon some basic parameters 

of solar cells. Short circuit current (ISC) is the 

current through the solar cell when the voltage 
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across the solar cell is zero (i.e. solar cell is short 

circuited) this is the largest current drawn from the 

solar cell. It depends upon the area of the solar cell, 

the number of incident photons or intensity of light, 

light spectrum and optical properties of the solar 

cell (i.e. absorption and reflection) the relation of 

short circuit current and I-V curve diagram (FIG. 

4) are given below 

  

JSC=ISC/A 
 

Short circuit current density (JSC) is the amount of 

short circuit current per unit area of the solar cell14. 

Open circuit voltage (VOC) is the maximum 

voltage from a solar cell and occurs when the net 

current through the device is zero that means when 

the circuit is open circuited, no load connected to 

the circuit so the current across the cell will be 

minimized and voltage is maximum. It is also the 

measurement of the recombination of the device. It 

depends upon the saturated current and light 

generated current of the cell. The normally open 

circuit voltage of solar cell measured around 0.5-

0.6 volts [15]. Another most important term in solar 

cell behavior or performance is Fill Factor (FF), a 

ratio that describes how close the I-V curve of a 

solar cell resemblance a perfect rectangle. The fill 

factor is the parameter which, in conjunction with 

ISC and VOC , determine the maximum power 

from a solar cell. The equation is given below 

 

FF=Pm/ISC×VOC 
 

The main goal of the any solar cell design is having 

maximum power. For each point on the I-V curve, 

to calculate the power of the cell current and 

voltage should be multiplied. Maximum power 

point (MPP) is the point on the I-V curve of the 

solar cell corresponding to the maximum output 

electric power. It denotes as 

Pm=Vmax×Imax 

In multi-junction solar cell compared with single 

junction solar cell, reducing current because the 

fixed number of photons distributed over the 

increasing number of layers in the solar cell. At the 

same time excited electrons having high electric 

potential and energies, so the reduction of current 

is compensated for by an increase in voltage, and 

overall power of the cell is increased so that the 

design of multi-junction is advantageous [16]. 

Quantum Efficiency (QE) is the value refers the 

amount of current when irradiation of photons of 

particular wavelength or it indicates the percentage 

of the absorbed photon that produces an electron-

hole  pair. While Conversion Efficiency (η) has 

refers the percentage of the incident solar radiation 

on the solar cell that converted into the useable 

electric  power, when the solar cell connected with 

an electric circuit [17]. There are so many factors 

that affecting the efficiency of solar cell like 

wavelength of the incident light, recombination, 

temperature, reflection of the light from the cell 

surface and surface area of the panel etc . 

 

3. Fundamentals of Multi-junction Solar 

Cells- 

These photovoltaic cells are photovoltaic solar cells 

with multiple p-n junctions of different 

semiconductor materials. In other words, we can 

say that several single junction solar cells stacked 

upon each other. Each material has different energy 

band-gap which produces an electric current with 

their respective wave length of light. The band gap 

of each layer decreases from top to bottom so that 

it can be passes more energy photons through the 

top layer and reach the absorber bottom layer that 

means collector. The multi-junction solar cell has 
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been subject of research since 1960 [18]. But the 

very first multi-junction solar was developed and 

display in the early 1980’s with conversion 

efficiency of 16% [19]. 

Multi-junction solar cells having their own 

limitations, relating to material availability with 

optimal bang-gap which allow higher efficiency 

through low defect densities simultaneously. 

Multi-junction used p-n junction always in forward 

bias. They are designed in such manner to capture 

photons from the light spectrum. Photons hit the 

top layer of cells are either reflected or absorb by 

the layer. Absorb photon have potential to give 

their energy hυ to an electron. If hυ≥Eg, it’s 

generating electron-hole pair. There are three basic 

characteristics are playing major role in multi-

junction solar cell performance and affected the 

conversion efficiency. The multi-junction solar 

cells are tested under different numbers of suns 

because they are often used in concentrator 

photovoltaic systems which allow us to reduce the 

size or number of cells needed. 

There are three major things which keep in mind 

when multi-junction solar cell is fabricated. 

3.1 Band-gap 

To be much efficient solar cell the cell should 

absorb radiation as much as possible. It only 

happens when band-gap of material should cover 

the wide range of the spectrum of light. Band-gaps 

of an adjacent layer should differ by as small 

amount as possible because of the amount of excess 

energy from light converted to heat is equal to the 

difference between the photon energy and the 

band-gap of the 

  

absorbing material. Triple junction solar cells are 

currently using 

GaInP(1.86eV)/GaAs(1.4eV)/Ge(0.65eV).  

For the quad junction AlGaInP (1.9eV)GaAs 

(1.4eV)/GaInAsP (1.1eV)/GaInAs(0.7eV) [20].  

In 1990 J M Olson et al. [21] using 1.7eV-1.1eV 

energy band gap for Ga0.5In0.5P/GaAs and 

received the conversion efficiency of 27.3%. Paul 

R Sharp et al. [22] gives the general idea for 

theoretical band gap-efficiency ratio as they 

suggest 1.9eV/1.33eV/0.92eV = 34.9%-38.8% for 

triple junction, 2eV/1.46eV/1.08eV/0.77eV = 

37.6%-41.8% for quad junction, 2.13eV/ 

1.46eV/1.08eV/0.77eV = 39.5%-43.9% for five 

junctions and 

2.22eV/1.76eV/1.42eV/1.15eV/0.92eV/0.71eV = 

40.8%-54.3% for six junctions solar cell. 

 

3.2 Lattice constant 

For the maximum current conductivity in multi-

junction solar cells, all layers of the different 

semiconductor materials which grown directly on 

the top of the layers, having similar crystal 

structure. The lattice constant describes the spacing 

of the atom location in the crystal structure. Crystal 

lattice constant mismatching in different layers 

creates dislocation in the lattice of the cell layers, 

which affect the efficiency of the cell. NREL 

(National Renewable Energy Laboratory USA) 

showed the lattice mismatching of very small 

amount around 0.01% decreasing the current 

production in solar cell [23]. 

 

3.3 Current Matching 
In the case of multi-junction solar cell, where the 

sub-cells are connected in series, the resulting 

current of such a tandem cell is the minimum of the 

two contributing sub-cells i.e. the weaker sub-cells 

are limiting the overall solar cell current. If the both 

sub-cell generate the same current, the device is 

currently-matched [24]. The current matching due 

to the design of sub-cell (thickness) and 

illuminating spectrum quality (if the illuminating 

spectrum quite differs from AM1.5D). In multi-

junction solar cell, the cell current can’t be adjusted 
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by a simple multiplicative correction factor because 

of further impact such as fill factor of the stacked 

cell [25]. 

After material is selected with desired band gaps 

and lattice constant, the thickness of each layer 

must be determined based on the material’s 

absorption constant and number of incident photon 

so that each layer will generate the photo current. 

  

4. Possible ways of efficiency 

improvement in multi-junction solar 

cells 

4.1 Increase in the number of Junctions 

The most possible way to efficiency improvement 

in multi-junction solar cells, is to device more 

junctions. Five and six junctions solar cell design 

partition the solar spectrum into narrower wave 

length ranges than triple junction cells that allows 

all the sub cells to be better current matched to the 

low current producing sub cell. Frank Dimroth et 

al. conclude that four or more junctions will be 

necessary to reach conversion efficiency above 

50% under concentrated sunlight [26]. Theoretical 

efficiency limits for multi-junction devices based 

on thermodynamic fundamentals are 37, 50 and 

56% for 1, 2 and 3 band- gap correspondingly [27]. 

 

4.2 Design Optimization of each sub-cells 

The second thing we can do with efficiency 

improvement is design optimization of each sub 

cells. The solar cell have different combination of 

sub cell band gaps. An alternative to GaInP top 

layer, AlGaAsS or AlGaInP with the band gap of 

1.98 eV can be used, which has the similar lattice 

constant and band gap energy. In the past, the major 

drawback of this approach was the high sensitivity 

of these materials to oxygen and water 

contamination, but recent results in this field is 

promising and hopeful [28-30]. As we know that 

the energy loss due to the series resistance is the 

cause of decrement in solar cell efficiency. The 

components of series resistance such as electrode 

resistance, tunnel junction resistance and lateral 

electrodes between electrodes will be estimated 

separately. 

 

4.3 Inclusion of nano-structures 

In recent years, it has been proposed and 

experimentally verifies that the use of 

nanostructure such as quantum wells, quantum 

dots, quantum wires, nano rodes, nanotubes offers 

the high photovoltaic efficiency potential. 

Theoretically, a single intermediate electronic band 

created by quantum dots would offer a 63.2% 

efficiency of an ordinary solar cell, which greatly 

exceeds the maximum conversion efficiency of 

31% for even a single junction device [31]. A 

system with an infinite number of sizes of quantum 

dots has the same theoretical efficiency as an 

infinite number of band gaps [32]. 

 

4.4 Concentration Photovoltaic 

As we know that the multi-junction solar cells are 

applicable in space applications and they are very 

expensive in cost. The new technology named 

concentrator photovoltaics overcomes these issues 

in multi-junction solar cells. This technology is not 

only help in efficiency improvement but also 

economically viable [33]. Concentrator operation 

well suited for multi-junction photovoltaic cells 

because increasing the concentration ratio improve 

the performance of photovoltaic cell even more. 

Concentrator photovoltaic opens the new door of 

opportunity in the efficiency improvement and cost 

reduction. Multi-junction solar cells have not found 

yet general application as compared to Si based flat 

PV module. Several researchers have investigated 

the possibilities of employing optical devices such 

as mirrors, Fresnel lenses, diachronic films and 

light guides in multi-junction solar cells [34- 36]. 
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By this way it is possible to collect solar light and 

concentrate its energy in a single small area solar 

cell. This reduces the total cell are an amount equal 

to the concentration ratio and thus decreases the 

cost of Photovoltaic system [37,38]. Concentrators 

collects direct and diffused both solar radiations 

simultaneously [39]. 

 

5. Conclusion 

The global population and economic growth will 

increase the rate of energy consumption more than 

double by the middle of 21th century. So we need 

to use another source of energy besides the 

conventional source of energy. At the present time 

the most efficient solar cell is multi-junction solar 

cells. But unfortunately, these cells are much 

famous not as comparable to Si based solar cells 

because these cells are costly and used in space 

applications. The most exciting aspect of multi-

junction solar cell is that there are still many 

possibilities to explore it. In this present study it 

was shown that the current design of multi-junction 

device can be improved by design optimization of 

each layer, by increasing the number of junctions 

in the photovoltaic cell structure or including the 

nanomaterials (such as quantum dots, 

nanorodesetc) which offers high potential for 

efficiency improvement. The gap between the ideal 

(theoretical) and real value of conversion efficiency 

in expected to decrease due to fundamental 

advances in understanding of material behavior. 

Concentrator photovoltaic technology in multi-

junction solar cells makes it applicable on earth and 

economically worthy. Thus, it expected that 

  

the use of highly efficient multi-junction solar cell 

with innovative concept of concentrator 

photovoltaic has the potential to establish a new 

milestone in history of photovoltaic. 
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Abstract 
Two identical spring-loaded cannons pointing 
backward are mounted on a frictionless railcart. 
The cannons are to be fired to propel the cart 
forward as rapidly as possible. Does it matter 
whether the two cannonballs are launched 
simultaneously or sequentially? The velocities and 
kinetic energies of the two balls and of the cart in 
various reference frames are analyzed in detail in 
order to explain the answer. 

 

 

1. Introduction 
A dual-cannon “rocket” cart is sketched in Fig. 1. 

A similarly powered trolley has been considered by 

Brun [1] with the assumption that each ball has the 

same final velocity relative to the initial velocity of 

the cart, regardless of when it is launched. Pinheiro 

[2], on the other hand, assumes that a ball’s final 

velocity is to be measured relative to the final 

velocity of the cart. Either way, the assumption that 

the relative exhaust speed of the balls will always 

be the same is questionable, at least for 

nonchemically powered cannons [3] such as the 

spring-loaded ones treated here. Edmonds [4] has 

specifically shown that the cart ends up with a 

different final velocity if the two balls are launched 

simultaneously than if they are launched one after  

 

 

m E 2 

M 

m E 1 

 

Figure 1. A pair of spring cannons bolted together and 

mounted on wheels. The cannons launch two balls, 

each of mass m, to propel the cart of mass M 

(exclusive of the two balls) forward. There is no axle 

friction, rolling friction, or air drag. The launcher 

travels on a pair of horizontal rails to ensure that its 

motion is one-dimensional. The springs are initially 

compressed such that they each have elastic potential 

energy E. 

the other. He first assumes that each ball has the 

same exhaust speed relative to the final velocity of 

the cart regardless of when it is launched. Next he 

considers the possibility that the total kinetic 

energy gained by the two balls and the cart is the 

same, whether the balls are released sequentially or 

simultaneously, but he does not spell out how that 

can be accomplished. In fact, in a follow-up letter 

[5] he says that the exhaust speeds must be 

carefully calculated and the launch mechanism 

mailto:mungan@usna.edu
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adjusted (in some unspecified fashion) to ensure it 

happens. His follow-up was in part a response to 

comments by Scaife [6] and by Hinson [7]. Hinson 

showed that the cart will end up with the same final 

velocity when the two balls are released 

simultaneously as when they are launched 

sequentially in the limit that the mass of the balls is 

much less than that of the cart, m M . The 

standard rocket equation is obtained in that limit 

when a continuous stream of exhaust is emitted, 

such as in the form of burning gas [8]. Specifically, 

during an infinitesimal emission time dt an 

infinitesimal amount of mass dm is launched out 

the tail, rather than the impulsive non-infinitesimal 

amount m in the present problem. Scaife has further 

commented that it is more efficient (in the sense of 

leading to a higher final rocket velocity for a fixed 

initial amount of fuel) to emit the gas in chunks (or 

clouds) for which all internal portions have the 

same exhaust velocity (and which thereby are 

dynamically equivalent to discrete balls). That 

claim anticipates Gowdy’s “perfect” rocket [3] and 

also verifies Edmonds’s hypothesis in his second 

letter [5] that for sequential launching the second 

ball should have the same kinetic energy (and 

hence velocity) as the first ball, in order to 

maximize the final velocity of the rocket. 

In the present article, the situation is 

reconsidered, but this time with a specific launch 

mechanism (namely spring-loaded cannons). In 

that way, no ad hoc assumption about the exhaust 

speeds of the balls is necessary. Instead, an explicit 

calculation of those velocities is carried out, by 

combining the conservation laws of mechanical 

energy and of linear momentum for the isolated 

system of balls plus cart. The result is a well-

defined problem (free of questionable assertions), 

that is solvable at the introductory physics level 

(using only elementary classical mechanics), and 

with three possible answers (namely simultaneous 

firing leads to the greatest final cart speed, or 

sequential firing does, or it is a tie) which all appear 

plausible and thus find proponents when posed as a 

ConcepTest clicker question [9] to students. 

Prior to revealing the correct answer, 

anticipation will be heightened if a class discussion 

includes consideration of the following two points 

[10, 11]. On the one hand, the gain in kinetic energy 

of the system of two cannonballs and cart in Fig. 1 

must be equal to the elastic potential energy 2E lost 

by the two cannons. This equality holds in any 

inertial frame of reference, which might suggest 

that the order of firing is irrelevant. On the other 

hand, consider the center-of-mass reference frame 

of the ground (in which the cart and balls are 

initially at rest). If the two cannons are fired 

sequentially, then the second ball will have an 

exhaust velocity relative to an initially forward 

moving cart. Its velocity relative to the ground will 

then normally be smaller than that relative velocity. 

Hence, if the two cannonballs are fired with nearly 

(or exactly) the same relative exhaust velocities, the 

second ball will acquire less kinetic energy relative 

to the ground than the first ball. That leaves more 

kinetic energy to be gained by the cart, which is 

similar to the Oberth effect for rocket propulsion 

[12]. This idea suggests that sequential firing might 

have an advantage over simultaneous firing. 

 

2. Analysis using the nonrelativistic 

conservation laws of classical mechanics 

This problem is an excellent example of a situation 

where a straightforward mathematical analysis is 

more convincing than conceptual arguments. Begin 

by considering the general problem of a cart of 

mass M carrying a single cannonball of mass m. 

(Let M be the mass of the cart without the ball.) 

Suppose the cart is initially traveling forward at 

speed U before it fires the ball. The cannon is taken 

to be ideal in the sense that 100% of its elastic 
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potential energy E gets converted into translational 

kinetic energy of the cart and ball. Adopt a 

reference frame moving with the initial speed U of 

the cart. After firing the cannon, denote the final 

speed of the ball and of the cart in this frame as  

and V, respectively. Conservation of linear 

momentum implies that 

 m MV   (1) 

while conservation of mechanical energy leads to 

 2 21 1
2 2

E m MV  . (2) 

Simultaneous solution of Eqs. (1) and (2) gives 

 

2 2
  and  

( ) ( )

EM Em
V

M m m M m M
  

 
. (3) 

Armed with this result, the final cart speed can 

be determined when it initially carries two balls as 

in Fig. 1. First, if the two cannons are fired 

simultaneously with the cart initially at rest relative 

to the ground, then replace 2m m  and 2E E  

in the expression for V to get 

simultaneous

8

( 2 )

Em
V

M m M



. (4) 

Next, for the sequential firing case, after the first 

cannon has been fired, the final speed V of the cart 

becomes the initial speed U for the second firing, 

except that it is necessary to replace M M m   

because one cannonball is still left onboard. Thus, 

the speed of the cart after the first cannon firing but 

before the second firing is 

2

( 2 )( )

Em
U

M m M m


 
. (5) 

After the second firing, the cart has a speed given 

by precisely V in Eq. (3) relative to speed U. Thus 

the final speed of the cart relative to the ground 

becomes 

 

sequential

2 2

( ) ( 2 )( )

Em Em
V V U

M m M M m M m
   

  
. (6) 

The ratio of Eq. (6) to (4) is 

sequential

simultaneous

2

2

V M M m

V M m

 



. (7) 

This expression reduces to unity if m M , so that 

one gets a tie in that limit, as Hinson [7] remarked. 

However, it is less than 1 otherwise. For example, 

it is equal to 96.6% if m M , which admittedly 

requires heavy cannonballs. (Interestingly, the ratio 

is independent of E, however, and so it does not 

matter how fast the balls are launched.) 

Therefore the two cannons should be fired 

simultaneously rather than sequentially, in order to 

maximize the final speed of the cart. To better 

understand this result, consider the speeds and 

kinetic energies of the launched cannonballs. In the 

simultaneous case, the speed and kinetic energy of 

the two balls relative to the ground (or equivalently, 

relative to the initial velocity of the cart) are 

respectively 

simultaneous

2

( 2 )

EM

M m m
 


  and  

balls 2
simultaneous simultaneous

1 2
(2 )

2 2

EM
K m

M m
 


 (8) 

where simultaneous was obtained by again 

replacing 2m m  and 2E E  in the 

expression for  in Eq. (3), just as was done to get 

Eq. (4). As a check, the kinetic energy of the cart 

relative to the ground is 
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cart 2
simultaneous simultaneous

1 4

2 2

Em
K MV

M m
 


 (9) 

so that one correctly obtains 

balls cart
simultaneous simultaneous 2K K E  . (10) 

Alternatively, the speed of the simultaneously fired 

cannonballs relative to the final velocity of the cart 

is 

 

simultaneous simultaneous simultaneous

2 ( 2 )E M m
V

Mm
 


     (11) 

with corresponding kinetic energy of 

 

balls 2
simultaneous simultaneous

1 2 ( 2 )
(2 )

2

E M m
K m

M



   . (12) 

The cart has no final kinetic energy in this frame of 

reference. However, the system is initially moving 

backward at speed Vsequential in this frame, so that 

the initial mechanical energy of the system is 

2
simultaneous

1 2 ( 2 )
2 ( 2 )

2

E M m
E M m V

M


    (13) 

in agreement with Eq. (12). This result verifies the 

first point suggested for class discussion at the end 

of Sec. 1. It demonstrates that, unlike kinetic 

energy, potential energy is frame independent [13]. 

Each cannon has initial elastic energy E stored in 

its compressed spring regardless of the frame of 

reference adopted, whereas the kinetic energies of 

the balls and cart have different values depending 

on the motion of the frame. 

In the sequential case, the speed and kinetic 

energy of the first ball relative to the ground are 

respectively 

first

2 ( )

( 2 )

E M m

M m m






  and  

first ball 2
sequential first

1 ( )

2 2

E M m
K m

M m



 


 (14) 

where first was obtained by replacing 

M M m   in the expression for  in Eq. (3), just 

as was done to get Eq. (5). In analogy to Eq. (6), 

the speed and kinetic energy of the second ball 

relative to the ground are respectively 

 

second

2 2

( ) ( 2 )( )

EM Em
U

M m m M m M m
    

  
  

and  
second ball 2
sequential second

1

2
K m . (15) 

As discussed at the end of Sec. 1, the second ball’s 

backward ground velocity is diminished by the 

forward velocity of the cart; the absolute value bars 

are needed because either square root term can be 

larger than the other, depending on the relative 

sizes of m and M. For example, U   when 

/ 1 2m M    in which case the second ball has a 

final speed of zero relative to the ground! In 

general, since the kinetic energy of the cart relative 

to the ground is 

 cart 2
sequential sequential

1

2
K MV  (16) 

where Vsequential is given by Eq. (6), one again 

correctly finds that 

 
first ball second ball cart
sequential sequential sequential 2K K K E    (17) 

after some algebra. Although second is smaller 

than simultaneous when / 3 2 3m M   , first 

is sufficiently larger than simultaneous that 
cart
sequentialK  always ends up being smaller than 
cart
simultaneousK  in contrast to the suggestion implied 

by the Oberth effect above. 
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3. Closing comments 

One can use these results to show that the exhaust 

speeds of the cannonballs (relative to either the 

initial or final velocities of the cart at the instant of 

their firings) are all different from each other, as  

 

Table 1. Speeds of the balls relative to either the initial or final velocities of the cart at the instant of firing. Here 

simultaneous is from Eq. (8), simultaneous  is from Eq. (11), first is from Eq. (14), first first U     from Eqs. (5) and 

(14), second    from Eq. (3), and second V     from Eq. (3). 

 

ball 
exhaust speed relative 

to initial cart speed 

exhaust speed relative 

to final cart speed 

simultaneous simultaneous

2

( 2 )

EM

M m m
 


 

simultaneous

2 ( 2 )E M m

Mm



   

first 

sequential 
first

2 ( )

( 2 )

E M m

M m m






 first

2 ( 2 )

( )

E M m

M m m



 


 

second 

sequential 
second

2

( )

EM

M m m
 


 

second

2 ( )E M m

Mm



   

listed in Table 1. Only in the limit  m M  do they 

all converge to the same value of 2 /EM m . 

Otherwise, the exhaust speeds relative to the initial 

cart velocity are in the order 

first second simultaneous      while those relative 

to the final cart velocity are in the opposite order  

simultaneous second first      . A simple example of 

these inequalities can be verified by putting 

m M into the six formulas in Table 1. 

The solution that simultaneous ejection gives a 

larger final railcart speed than sequential ejection 

of two balls becomes more intuitive in the opposite 

limit   where the final payload is much lighter than 

the exhausted fuel. In the sequential case, after the 

first half-mass m is ejected, both it and the second 

half-mass m (plus its tiny attached M) each gain   

/ 2E  amount of kinetic energy by symmetry; then 

after the second spring is fired, there is almost no 

change in the kinetic energy of the second (now 

detached) half-mass because the payload M is so 

light compared to it. (The speed of a moving car 

does not noticeably change if the driver flicks a 

cigarette butt out the window!) Thus each fuel half-

mass m ends up with / 2E  amount of kinetic 

energy, and so the cart must end up with the 

remaining E amount of released kinetic energy (all 

relative to the ground). On the other hand, in the 

simultaneous case, almost all 2E goes into the 

payload and little into the heavy full-fuel-mass 2m 
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ejected as a unit. The ratio of final payload kinetic 

energies in the two cases is therefore 

21
sequential2

21
simultaneous2

1

2 2

MV E

EMV
      (18) 

which agrees with Eq. (7) evaluated in the limit  

m M . 

In conclusion, the efficiency or utilisation 

[14] of the fuel to accelerate the payload is 

maximized by launching all of the fuel out the tail 

end at once, rather than dribbling it out in 

sequential bits. However, that is only true if the 

rocket can maintain the same launch energy per 

unit mass of fuel either way! Specifically, to ensure 

that is true in the present setup, two cannons are 

used to fire the balls simultaneously. The rocket 

would be lighter (and less costly to build) if it 

instead had only one cannon which was used to fire 

the two balls sequentially. For a real rocket, there 

are trade-offs in the weight and power of the engine 

that favor sequential operation. 

Finally, it would be interesting to explore 

what happens if the second spring cannon were 

fired after the first cannon is fired but before the 

first spring has fully decompressed and released its 

ball. Presumably the results would smoothly 

interpolate between the simultaneous and 

sequential cases analyzed in this article. That 

avoids the disconcerting “discontinuity” which 

otherwise occurs as the time interval t between the 

ejection of the two balls is reduced with a sudden 

change in the final speed of the rocket just as 0t   

. 
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Abstract

We solve the time-independent Schrödinger
equation for a square well potential, using
matrix methods based numerical technique.
Implementation of numerical method in a
computer requires limiting the region of po-
tential from infinity to some finite value,
which is equivalent to embedding it within
an infinite well potential. The eigen func-
tions of the infinite well are utilised as the
basis to build the hamiltonian matrix for the
system. The matrix eigen equation is solved
using Free Open Source Software (FOSS)
Gnumeric which is a worksheet based envi-
ronment that is easy for Implementation at
the UG level.

1 Introduction

Marsiglio et.al., have introduced matrix
methods for solving various quantum me-
chanical potentials [1, 2, 3] by embedding
them within an infinite potential. This tech-

nique has the advantage of obtaining the
energy eigen values and the corresponding
eigen functions in a single iteration. With
many FOSS offering eigen value solvers, this
technique is easy to implement as part of
simulation activities for quantum mechan-
ics lab course at the UG level. Simula-
tions have become an important approach
for learning the concepts of physics[4, 5, 6].
There are many good simulations available
at PhET [7, 8] and Compadre websites [9]
written in Java and available for running
both online and offline in order to under-
stand the effect of various system param-
eters and their inter-relationships. Under-
standing and implementing the numerical
methods involved to simulate a physical
system is an important skill that needs to
be developed while training to be a good
physicist. Here, we focus on the pedagogical
aspects involved in learning to perform sim-
ulations at the UG level, by taking the exam-
ple of square well potential, which students
encounter in introductory course of quan-
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tum mechanics.

2 Methodology

To solve any physics problem using a com-
puter simulation, we take up the following
approach:

Step 1: Modelling the Physics prob-
lem
The primary step is to have clear un-
derstanding of Mathematical model that
describes the problem at hand. Here,
one could use the modeling methodology
suggested by Hestenes [10] to describe the
system w.r.t. its interactions and process
involved in it. After giving full description
of the system, one can proceed to formulate
the model by introducing the force or poten-
tial obtained from the interaction law into
the dynamical law that underlies the pro-
cess and introducing the appropriate initial
and boundary conditions that need to be
complied with. Once, the mathematical
model is ready, one can solve the problem
using analytical technique, if available or
alternatively one can resort to numerical
methods.

Step 2: Preparing the system to be solved
using numerical approach

• Choice of Numerical Technique
By looking at all the available numerical
methods for solving the current prob-
lem, one has to arrive at the technique
that is stable, accurate and reasonably

fast among the various methods avail-
able.

• Rephrasing the Physics problem in ap-
propriate units
This is important so as to avoid very
large or very small numbers in compu-
tation that could lead to round off er-
rors. Here, either the variables involved
are made dimensionless or have to be
expressed in an appropriate set of units.
For example, for astronomical systems,
one can use astronomical units such as
specifying the masses in terms of mass
of earth and distances in terms of dis-
tance between Sun and Earth, time in
light years and so on.

• Discretizing the continuous variables
As the computer can handle only dis-
crete data, it is inevitable to sample the
continuous variable with appropriate
step size and also limit the variables to
a finite range in accordance with the re-
gion of interest for solving the problem.
This is a must to translate the problem
into one that could be programmable.

Step 3: Implementation of the numerical
method in computer

• Algorithm
The inputs required, the equations to be
iterated, the functions that need to be
called in the main processing block and
outputs generated (to be displayed as
tabular data or plots) needs to be clearly
defined in a step by step procedure so

36/1/7 2 www.physedu.in
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that it is easy to program in a chosen
software. Then, the code is written.

• Running the program
This is initially to be taken up for a
problem for which we know the analyt-
ical solution. This helps to troubleshoot
the code for any mistakes and ensures
its proper working.

• Varying the parameters related to the
numerical algorithm
We have to run the code by changing
the various inputs parameters that ef-
fect the algorithm to minimize the var-
ious errors associated with them. Typ-
ical parameters that need to be opti-
mized would be step-size, number of
points representing the variable, toler-
ance limits on the iterated-quantities,
values that need to remain constant
with increasing number of iterations,
etc.

Step 4: Simulation

• Varying the physical properties associ-
ated with the physical system
Once the code is optimized, the vari-
ables associated with the physics of the
problem can be varied. Plots & tabu-
lar data could be generated for under-
standing the relationships that would
lead to analysis, interpretation & dis-
cussion of the results.

• Modifications to the Physical system at
hand

It is possible to vary the physics prob-
lem, in the sense, that the functions,
initial conditions, boundary conditions,
etc., involved are changed but yet the
same numerical technique could be em-
ployed to study the system.

3 Implementation

3.1 Modelling the Physics Problem:

Consider a microscopic particle in 1-
Dimensional system (reference system)such
as an electron which is of mass m and en-
ergy E (object variables) is interacting with
a finite attractive potential well of width ’b’
and depth V0 (interaction variables). The
interaction potential V(x) can be written in
equation form as

V(x) =


V0, −∞ < x < −b/2

0, −b/2 6 x 6 b/2

V0, b/2 < x < ∞

(1)

and is plotted below in Figure 1.

Figure 1: Finite square well in 1-D
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In the microscopic domain, consider-
ing that the wave nature associated with a
particle plays significant role in understand-
ing the probability of it being found at vari-
ous locations (dependent on state function,
ψ(x)), we need to solve the ‘Time Indepen-
dent Schrödinger Equation(TISE)’ (dynami-
cal equation) in the regions 1, 2 and 3, to ob-
tain the wave functions for the particle with
energy E i.e

Hψ(x) = Eψ(x) (2)

where H is the hamiltonian of the system
given by

H =
−h̄2

2m
d2

dx2 + V(x) (3)

Considering the case E < V0, the ana-
lytical bound state solutions of TISE in-
volving graphical approach have been dis-
cussed in various standard texts of quantum
mechanics[11, 12, 13].
Taking specific values for parameters V0 and
b as: V0 = 14eV and b = 2Å, we obtained
the energy values for bound states by solv-
ing the eigen value conditions [11], utilising
Newton-Raphson method[14, 15] to 3 deci-
mal places as

E1 = 1.467eV

E2 = 5.711eV

E3 = 11.918eV (4)

Now, we focus on getting numerical so-
lutions by using matrix diagonalization
method suggested by Marsiglio [3, 16].

3.1.1 Marsiglio’s matrix method

The central idea in matrix matching method
is to limit the potential of interest to a finite
region, which is equivalent to embedding it
within an infinite square well potential of
width ’a’. The TISE eq.(2) gets modified as

[
H∞ + Vw(x)

]
ψ(x) = Eψ(x) (5)

where H∞ is the hamiltonian of infinite
square well potential and Vw(x) is the po-
tential limited to finite region [0,a].
The energy eigen values and normalized
eigen functions of H∞ are given by

E∞
n =

n2π2h̄2

2ma2 (6)

and

Φn(x) =

√
2
a

sin
(

nπx
a

)
(7)

This suggests the solution ψ(x) to be written
as a linear combination of sine functions as
basis. So, ψ(x) is expressed as

ψ(x) =

√
2
a

∞

∑
n=1

Cn sin
(

nπx
a

)
(8)

where the coefficients Cn’s need to be deter-
mined. This is akin to performing Fourier
analysis.
Substituting eq.(8) in eq.(2), we get

H
∞

∑
n=1

CnΦn(x) = E
∞

∑
n=1

CnΦn(x) (9)
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Pre multiplying eq.(9) by Φ∗m(x) on both
sides and integrating over all space,∫ ∞

−∞

(
Φ∗m(x)

[
H∞ + Vw(x)

] ∞

∑
n=1

CnΦn(x)
)

dx

= E
∫ ∞

−∞

(
Φ∗m(x)

∞

∑
n=1

CnΦn(x)
)

dx

(10)

Since integration and hamiltonian are linear
operators, eq.(10) can be written as

∞

∑
n=1

Cn

∫ ∞

−∞
Φ∗m(x)H∞Φn(x)dx+

∞

∑
n=1

Cn

∫ ∞

−∞
Φ∗m(x)Vw(x)Φn(x)

= E
∞

∑
n=1

Cn

∫ ∞

−∞
Φ∗m(x)Φn(x) (11)

Introducing the notation for∫ ∞

∞
Φ∗m(x)Vw(x)Φn(x) = Vmn (12)

using
H∞Φn(x) = E∞

n Φn(x) (13)

and ∫ ∞

−∞
Φ∗m(x)Φn(x) = δmn (14)

we get

E∞
m Cm +

∞

∑
n=1

VmnCn = ECm (15)

for m=1, 2, 3,...
These are any array of m equations that can
be expressed as

E∞
m Cm×1 + Vm×nCn×1 = ECm×1 (16)

Because m takes same values as n, we have

HC = EC (17)

where

H =



E∞
1 + V11 V12 . . . V1n

V21 E∞
2 + V22 . . . V2n

. . . . . .

. . . . . .

. . . . . .
Vn1 Vn2 . . . E∞

n + Vnn


and

C =



C1

C2

C3

.

.

.
Cn


or we can express H as

Hn×n = E∞
n In×n + Vn×n (18)

3.2 Application to finite square well
potential

The hamiltonian for the finite square well
potential is given by

H = − h̄2

2m
d2

dx2 + V(x) = H∞ + Vw(x) (19)

where, H∞ is the hamiltonian of infinite
square well potential and Vw(x) is restricted
to a finite region [0,a] defined as

Vw(x) =


V0, if b1 6 x 6 b2.

0, if 0 < x < b1 and b2 < x < a

∞, x=0 and x=a
(20)

and is shown in Figure 2.
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Figure 2: Square well embedded inside an
infinite well

Now, V-matrix consists of diagonal ele-
ments, Vnn for which m=n and can be de-
termined as

Vnn =
n2π2

2a2 +
V0

a

[
b1 + a− b2 +

a
2nπ

(sin(
2nπb2

a
)− sin(

2nπb1
a

))

]
(21)

and non-diagonal elements, Vnm which are
to be determined as

Vnm = V0

[
sin (n−m)πb1

a
(n−m)π

−
sin (n−m)πb2

a
(n−m)π

+
sin (n+m)πb2

a
(n + m)π

−
sin (n+m)πb1

a
(n + m)π

]
(22)

Theoretically, H-matrix is infinite in dimen-
sions, which needs to be limited to a finite
dimension, say N for sake of computation.

3.3 Choice of units: Atomic units

We prefer to work with atomic units where
h̄, me, c and Coulomb factor, ke =

1
4πε0

all are
equal to unity. This would mean that dis-
tances are choosen in Bohr and energies are

in hartree[17]. That is,

L = 1Bohr = 0.52917725Å

E = 1 hartree = 27.211396 eV

3.4 Discretizing position variable

We can only represent the position variable
at certain discrete points within the finite re-
gion[0,a]. Typically, it is chosen as equally
spaced points over this region with step size
of say, h. That is, the values of x are limited
to [0,h,2h,3h,....nh,...a].

3.5 Implementation in Gnumeric
Spreadsheet

We enlist the various steps involved in im-
plementing matrix method formalism for
obtaining the energy spectrum and wave
functions of 1-dimensional square well
problem using free open source software,
’Gnumeric’ which is a spreadsheet environ-
ment.
Step 1 : Initializing the parameters

Figure 3: Initializing the various input pa-
rameters in gnumeric worksheet
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The initial values to the various pa-
rameters, V0 = 14eV, a = 8Å and b = 4Å
involved in square well potential are en-
tered in worksheet (as shown in Figure 3):
• In cells A4, A5, A6, we mention the
parameters as labels.
• In cells B4, B5, B6 we enter their respective
values as 14, 8 and 4.
• In cell C4, we have given formula
′′ = $B$4/27.211396′′ so as to convert
the potential V0(x) into hartree units
and in cells C5 and C6 we have given
the formula ′′ = $B$5/0.52917725′′ and
” = $B$6/0.52917725” respectively so as to
convert the distances (’a’ and ’b’) into Bohr
units.
• In cells A7 and A8 we label the param-
eters b1 and b2 respectively and show
their respective formulae in B7 and B8.
In cells C7 and C8, we enter the for-
mulae as ” = ($C$5 − $C$6)/2” and
” = ($C$5 + $C$6)/2”, respectively.

Step 2 : Generating the hamiltonian
matrix
Initially, let’s choose 5 basis functions, N = 5,
so we need to generate a 5× 5 matrix. Now,
we give the values of m & n from 1 to 5 in
cells A17-A21(rows) and B16-F16(columns)
as shown in Figure 4. Next, enter the
formula for H-matrix in cell B17 as shown
using if condition expression which is
” = i f (condition, [truevalue], [ f alsevalue])”
In our case, the if condition is given as:
$A17 = B$16. True value is for diagonal
elements given by eq. (21), which is to be

typed as

Figure 4: Generating the matrix in gnumeric
sheet

($A17^2*pi()^2/(2*$C$5^2))+

($C$4/$C$5)*($C$7+$C$5-$C$8+

($C$5/(2*pi()*$A17))*

(sin(2*pi()*$A17*$C$8/$C$5)-

sin(2*pi()*$A17*$C$7/$C$5)))

whereas false value is for non-diagonal ele-
ments, given by eq.(22), and is typed as:

($C$4)*((sin(($A17-B$16)*pi()*

$C$7/$C$5)/(($A17-B$16)*pi()))-

(sin(($A17-B$16)*pi()*$C$8/$C$5)/

(($A17-B$16)*pi()))+(sin(($A17+B$16)*

pi()*$C$8/$C$5)/(($A17+B$16)*pi()))-

(sin(($A17+B$16)*pi()*$C$7/$C$5)/

(($A17+B$16)*pi())))

After entering desired formula, press Enter
key, first matrix element will appear in cell

36/1/7 7 www.physedu.in



Physics Education January - March 2020

B17. To generate remaining values select cell
B17 and drag the cursor upto cell F17 hori-
zontally. After this, select entire row from
B17:F17 and drag the cursor vertically and
drop at F21. The complete H matrix hav-
ing 25 elements is shown in Figure 5. Step

Figure 5: 5× 5 H matrix in gnumeric sheet

3 : Calculating the eigenvalues and corre-
sponding eigenvectors
Gnumeric has an eigen value solver, which
is not available in other worksheet environ-
ments such as MS-excel or open Office Calc.
Here, we have generated 5 × 5 matrix in
Step 2 which has 5 eigen values and 5 × 1
eigen vector for each of them. Now, select
6×5 matrix from B28 to F33 by dragging the
mouse and then we type in formula bar:
” = eigen(B17 : F21)”
and press Ctrl+Shift+Enter keys together.
With this, all 5 eigen values will appear in
cells B28:F28 in decreasing order along with
their corresponding 5 column vectors below
each of them as shown in Figure 6.
Since all energy values come out to be in

hartree, we need to convert them into origi-
nal units i.e in eV by multiplying with a fac-
tor of 27.211396 so as to compare with ana-
lytical values and this is done by typing for-
mula in cell B35 as: ” = B$28 ∗ 27.211396”
and drag cursor upto F35.

Figure 6: Calculating eigen values and eigen
functions

Step 4 : Generating basis functions
In order to determine the wavefunctions in
eq.(8), we need to generate the basis func-
tions, φn(x). In Figure 7, we generate x-
values first from A43:A58 at an interval of
1 i.e 16 values and the values of ’n’ are to be
fed in cells B41:F41 as 1, 2, 3, 4, 5. The cells
B42:F42 are labelled for clarity as phi1(x),
phi2(x), phi3(x), phi4(x) and phi5(x) respec-
tively. Now, select the entire array i.e. range
of cells from $B43:$B58 and then enter in for-
mula bar:

=sqrt(2/$C$5)$sin(B$41*pi()*

($A43:$A58)/$C$5)
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Figure 7: The five basis functions of infinite
square well potential

After giving the formula, press Ctrl+Enter.
The remaining phi vectors will be generated
by cursor drag from $B43:$B58 and drop
at $F43:$F58. We can observe that all these
phi functions are nothing but the 5 sine
functions of 1-D infinite square well.
Step 5 : Obtaining the wave functions
For obtaining the wave functions, x values
are generated first ranging from 0-15 in
cells A64:A79 just as we have done in
Step 4. Now, we need to multiply eigen
vectors with basis functions to get wave
functions(psi) as per eq. (7) By looking into
Figure 6 and Figure 7 one can generate fifth
wavefunction as
psi5(x) = C51 ∗ phi1(x) + C52 ∗ phi2(x) +
C53 ∗ phi3(x) + C54 ∗ phi4(x) + C55 ∗
phi5(x)
where C51, C52, C53, C54, C55 are the
components of 5th eigen vector(coefficients

of fifth wave function) from B29:B33. To
determine this, first select the range of cells
from B64:B79 and then enter the following
expression in the formula bar as:
= $B$29 ∗ $B43 + $B$30 ∗ $C43 + $B$31 ∗
$D43 + $B$32 ∗ $E43 + $B$33 ∗ $F43
and press Ctrl+Enter. This will generate
only fifth wavefunction. In order to gen-
erate all ψ functions, one needs to give the
formula in such a way that all ψ values will
appear simultaneously. To achieve this, first
select the range of cells from B64:F79 and
then enter the following in the formula bar.
= B$29 ∗ $B43 + B$30 ∗ $C43 + B$31 ∗
$D43 + B$32 ∗ $E43 + B$33 ∗ $F43
and press Ctrl+Enter, which will generate
all the ψ values as shown in Figure 8. It
is to be observed that ψ functions that are
generated are in descending order.

Figure 8: The wave functions of square well
potential
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4 Results and Discussions

4.1 Visualising wavefunctions and
probability densities

Plotting the wave functions ’ψn(x)′ :
We plot the first three wavefunctions as
a superposition of the basis functions
with their corresponding weightages (coef-
ficients). The plots are shown in Figure 9.

Figure 9: Graph of ψ1(x), ψ2(x) and ψ3(x)
eigen functions

Probability density functions :
Once we obtain the wavefunctions, we can
determine probability densities i.e probabil-
ity of finding a particle(electron) in state
ψ(x) at position x by multiplying conjugate
of ψ with ψ i.e ||ψ|| = ψ∗ψ. The proba-
bility densities corresponding to first three
wavefunctions which are of our interest are
shown in Figure 10.

Figure 10: Getting the probability densities
for square well potential

4.2 Study of variation of algorithm
parameters: N and a

Effect of number of basis functions ’N’ :
During the implemetation stage, we have
generated the results for N = 5 but these
do not give the expected energy values to a
good accuracy. So, we increased N in steps
of 5 upto N=30, where the accuracy is found
to be less than 2%. This effect could be
clearly seen in Table 1.
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Table 1: Comparison of numerical and ana-
lytical energy values for a particle in finite
square well for V0 = 14eV = 0.514 hartree
and a = 8Å=15.118 Bohr

Energy eigen values(eV)
Analytical Numerical

N=5 N=30 N>70
E1 1.467 1.511

(3.00%)
1.468
(0.07%)

1.468
(0.07%)

E2 5.712 5.967
(4.48%)

5.722
(0.19%)

5.721
(0.17%)

E3 11.919 12.678
(6.38%)

12.089
(1.43%)

12.087
(1.42%)

Effect of varying the infinite square well
width ’a’ :
The effect of infinite square well of width(a)
on bound state energy values is well pre-
sented in Table 2. It can be seen that the ac-
curacy of given energy level decreases with
the increase in ’a’ for same value of N =
70. The explanation behind this is that as ’a’
increases, spatial resolution gets decreased
for particular basis state, φ30(say) as com-
pared to 30th basis state for smaller value of
’a’. Also, the spread of sine wave increases
well beyond the region of interest. As a re-
sult, there will be poor representation of ba-
sis functions within the infinite square well
region. Therefore, to achieve good conver-
gence as ’a’ is increased, we need to increase
the number of basis functions, N and de-
crease the step-size, h for descretizing ’a’ ac-
cordingly. Another important observation is
that for well width b = 4Ao, only for a ≥ 20
Ao, the numerical results converge to all the

three analytical values.

4.3 Simulation by varying the physical
parameters of the system: V0 and b

Effect of varying the finite square well
width ’b’ :
Results of bound state energies for finite
square well potential as a function of well-
width ‘b’ are shown in Table3. It is clear that
as ’b’ increases, number of bound states also
increases.
As b→ 0, the finite square well reduces to a
delta potential where the probability of find-
ing a particle becomes maximum at the cen-
tre of infinite square well. On other hand,
when b → a, numerical results began to re-
semble with those of the infinite square well.
Effect of varying the finite square well depth
′V′0 :

When infinite square well depth, V0 is
increased, the number of bound states also
increased and such behaviour is also ex-
pected which can be seen clearly from data
presented in Table 4. One can observe that
the energy eigen values for V0 = 104 are very
close to those of the infinite well potential
shown in last column.
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Table 2: Variation of energy eigen values with infinite square well width ‘a’ for b = 4Å =

7.559 Bohr and V0 = 14eV = 0.514 hartree. N is varied till convergence is acheived.

Energy eigen values(eV)
Analytical Numerical

a=10Å a=20Å a=30Å
N=70 N=80 N=70 N=100 N=70 N=150

E1 1.467 1.467 1.467 1.467 1.467 1.468 1.467
E2 5.712 5.712 5.712 5.713 5.712 5.716 5.712
E3 11.919 11.954 11.954 11.921 11.919 11.926 11.919

5 Conclusions

We have introduced a simple worksheet
based simulation methodology for solving
the TISE for 1D finite square well for ob-
taining its bound state energy eigen values
and corresponding eigen wavefunctions us-
ing the 1D infinite square well wavefunc-
tions as basis. This approach could be easily
extended to solve the Schrödinger equation
for other potentials such as Harmonic, An-
harmonic, Morse and Double well as well as
N-square-well since it is possible to obtain
the analytical expressions for the integrals
involved in the determination of hamilto-
nian matrix elements for these. For central
potentials such as Hydrogen atom, spherical
square well, Yukawa and Woods-Saxon, we
need to determine the integrals involved nu-
merically and a FOSS Scilab is a good choice.
Even then, the current suggested approach
could be used as the first step to give clarity
regarding the steps involved in implemen-
tation for the former potentials, so that it be-

comes pedagogically easy to write the code
in Scilab for the later ones.
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Table 3: Variation of energy eigen values
with finite square well width(b) for N =

140, a = 8Å = 15.118 Bohr and V0 = 14eV =

0.514 hartree. The analytical value corre-
sponding to energies are shown below in
brackets.

Numerical(Analytical)
energy eigen values(eV)

b=2Å
(a=20Å)

b=4Å
(a=16Å)

b=6Å
(a=16Å)

E1 3.915
(3.915)

1.467
(1.467)

0.756
(0.756)

E2 12.972
(12.972)

5.712
(5.712)

2.997
(2.997)

E3 11.919
(11.919)

6.619
(6.619)

E4 11.302
(11.302)

References

[1] Marsiglio F., ”The Harmonic Oscil-
lator in Quantum Mechanics:A third
way”, American Association of Physics
Teachers 77, no. 3, (2009): 253-258.

[2] Jugdutt B.A. and Marsiglio F., ”Solv-
ing for three- dimensional central po-
tentials using numerical matrix meth-
ods”, American Association of Physics
Teachers 81, no. 5, (2013): 345-346.

[3] Jelic V and Marsiglio F., ”The Dou-
ble Well Potential in Quantum Mechan-
ics:a simple, numerically exact formu-
lation”, European Journal of Physics,
(2012):1-10.

Table 4: Variation of energy eigen values
with finite square well depth(V0) for N =
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Abstract

We give a pedagogical introduction of the es-

sential features of General Theory of Relativity

(GTR) in the format of an undergraduate (UG)

project. A set of simple MATHEMATICA®

code is developed which enables the UG stu-

dents to calculate the tensorial objects without

prior knowledge of any package operation. The

orbit equations of light and material particle

in Minkowski and Schwarzschild spacetime are

solved numerically to illustrate the crucial tests

of GTR.

1 Introduction

In a reminiscence on General Theory of Rel-
ativity Einstein wrote, “I was sitting in a chair

in the patent office at Bern when all of a sudden
a thought occurred to me. ‘If a person falls freely,
he will not feel his own weight’. I was star-
tled. This simple thought made a deep impres-
sion on me. It impelled me to a theory of grav-
itation” [1]. In contrast, Newton narrated
the natural world as, “...the whole burden of
(natural) philosophy seems to consist of this -
from the phenomena of motions to investigate
the forces of nature, and then from these forces
to demonstrate the other phenomena” [2]. Ac-
cording to him, the attraction between two
gravitating objects is due to the ‘gravitational
force’ between them, while Einstein did not
endorse it as a ‘force’, but a manifestation of
the curvature of spacetime, an entity which
is formed by soldering space and time to-
gether. Einstein’s GTR is regarded as one of
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the foremost intellectual triumph of all time
which always attracts the young undergrad-
uate (UG) students. However, their enthu-
siasm is often impeded by two major ob-
stacles: first, conceptually the tenet of GTR
is completely different from Newtonian ap-
proach of gravitation, and second, the eval-
uation of the tensorial quantities of Rieman-
nian geometry is very tedious and often
leads to endless number of human errors.
To address the first part of two major hin-
drances, the serious readers may go through
books [3, 4] and large quantity of online ma-
terials available in Internet. However, for
the second part, i.e., to compute the tensorial
objects, they generally consult suitable soft-
ware packages to minimize the human error
and save their precious time. Today there
exists a plenty of free as well as commercial
packages based on MATHEMATICA® [5],
MATLAB® [6] or other software to carry out
tensor algebra on computer. However, due
to short span a given semester allotted for
the UG project, the students of the sopho-
more or advanced years often face great dif-
ficulty to learn the intricacies of these pack-
age operation in particular. To address this
problem, in this paper we have provided
a set of MATHEMATICA® code to calcu-
late the tensorial objects like, Cristoffel sym-
bol, Riemannian, Ricci, Einstein tensor and
Geodesic equation which they require to
learn GTR. Our approach is a easy alter-
native to popular MATHEMATICA® based
packages like, MathGR® [7], GTRTensorII®

[8] etc [9, 10], which a student can workout

easily without prior knowledge of package
operation.

The remaining parts of the paper are
organized as follows: In Section 2 we in-
troduce the basic formula of Reimaniann
geometry necessary to develop the subject.
Section 3 gives the step by step usage of
MATHEMATICA® software to calculate the
tensorial objects from some simple metric.
In Section 4, we discuss the orbit equation
of light and the material particle by solv-
ing the geodesics equations in Minkowski
spacetime. The Einstein field equation in
Schwarzschild spacetime is solved in Sec-
tion 5 and the corresponding orbit equa-
tions are studied. Section 6 illustrates the
numerical solution of these equations us-
ing MATHEMATICA® code and discuss the
bending of light and perihelion shift, two
most coveted tests of GTR. Finally, we sum-
marize our results and discuss outlook.

2 Mathematical preliminaries

2.1 Key formula and equations

The special theory of relativity ensures
frame independence of the physical laws
with respect to all inertial frame of refer-
ence, while the general theory of relativity
extends the same idea to include the non-
inertial frame also. Any object moving un-
der the influence of the gravitational field is
essentially a accelerating object and there-
fore fits under that paradigm of the non-
inertial frame of reference. To introduce the
key effects of gravitation within framework
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of GTR, let us recall some basic formula of
Riemannian geometry. For their detailed
derivation, we refer the readers to consult
any standard textbook on GTR [3, 4, 11].

Any vector quantity Vµ (a tensor of
rank one) in four dimensional space-time
can be expanded as 1

V(t, r) = êµ(t, r)Vµ(t, r) (1a)

V(t, r) = êµ(t, r)Vµ(t, r) (1b)

where Vµ and Vµ are defined as the covari-
ant and contra-covariant vectors with cor-
responding basis vectors êµ and êµ, respec-
tively. We can define the two-indexed co-
variant and contra-variant metric tensor of
rank two,

gµν(t, r) = êµ(t, r)êν(t, r) (2a)

gµν(t, r) = êµ(t, r)êν(t, r), (2b)

which satisfies the orthogonality relation,
namely,

gµνgµρ = δν
ρ . (3)

The metric tensor have the ability to trans-
form the contravariant vector into a covari-
ant vector and vice versa and this operation
is known as raising or lowering of indices,

Vµgµν = Vν Vµgµν = Vν, (4a)

Vµνgµσ = Vν
σ , Vµ

ν gµσ = Vνσ,

Vµν = gµρVρσgσν. (4b)

In general, we may have a covariant, con-
travariant or a mixed tensor of rank n, m and
(n, m), respectively,

Vµ1µ2µ3...µn , Vµ1µ2µ3...µm , Vµ1µ2µ3...µm
ν1ν2ν3...νn . (5)

To develop a calculus on the spacetime con-
tinuum, it is customary to define Christoffel
symbol which involves the derivative of the
metric tensors with respect to spacetime co-
ordinate xµ(x1, x2, x3, x4),

Γρ
αβ =

1
2

gργ(
∂gγα

∂xβ
+

∂gγβ

∂xα
−

∂gαβ

∂xγ
), (6)

which is symmetric with respect to its lower
indices. The covariant derivative of a second
rank tensor can be defined in terms of the
Cristoffel symbol, i.e.,

DρVµν = ∂ρVµν − Γα
µρVαν − Γα

νρVµα, (7a)

DρVµν = ∂ρVµν + Γµ
αρVαν + Γν

βρVµβ. (7b)

The covariant derivative of metric tensor
has vanishing value, i.e.,

Dαgµν = 0 Dαgµν = 0. (8)

The Riemann curvature tensor is defined as

(DµDν − DνDµ)Vρ = Rλ
ρνµVλ, (9)

where,

Rλ
µνρ = ∂νΓλ

µρ − ∂ρΓλ
µν + Γη

µρΓλ
ηρ − Γη

µνΓλ
ηρ,
(10)

and on contraction it gives the Ricci tensor
and Ricci scalar, i.e.,

Rµν = gλρRλρµν, R = gµνRµν, (11)

respectively. It is convenient to the define a
second rank tensor called ‘Einstein tensor’,

Gµν = Rµν −
1
2

Rgµν, (12)

which is divergence less, namely,

DµGµν = 0, (13)
1. Henceforth, the summation over the repeated in-

dices is assumed following the Einstein convention.
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Thus we can write celebrated Einstein equa-
tion,

Gµν = −8πG
c4 Tµν, (14)

where Tµν be the divergence-free energy-
momentum tensor of the gravitating matter
which is responsible for producing the cur-
vature in spacetime.

2.2 Geodesic equation in curved

space-time

In Newtonian mechanics, the equation of
motion of a free particle (F = 0) in the Eu-
cledean space is given by,

d2r
dt2 = 0, (15)

while in the special theory of relativity,
which deals with the inertial frame of refer-
ence, the dynamics is governed by the equa-
tion of motion,

d2xµ

dτ2 = 0. (16)

Here xµ represents the spacetime coordinate
in Minkowski spacetime with τ as the body-
fixed proper time.

On the other hand in GTR, due to in-
homogeneous character of the gravitational
field, the inclusion of the acceleration be-
comes indispensable. Under such condition,
the introduction of non-inertial frame of refer-
ence becomes inevitable and the equation of
motion is given by so called, Geodesic Equa-
tion,

d2xµ

dτ2 + Γµ
νσ

dxν

dτ

dxσ

dτ
= 0, (17)

which completely generalizes Eq.(16).

Thus from the calculation point of view,
the GTR involves two steps:

• To solve the Einstein’s equation Eq.(14)
to find the metric tensor gµν which
determines the geometry of spacetime
continuum.

• To find the solution of the geodesic
equation Eq.(17) to know the trajectory
of the point mass or massless particle in
that spacetime.

In this way, GTR is essentially a metric based
geometric theory of gravitation which re-
places the preeminent position of force equa-
tion advocated by Newton.

3 MATHEMATICA® Code for

Tensorial Calculus

3.1 Basic flowchart

The calculation of the tensorial quantities
in Riemannian geometry involves multiple
derivative of the metric tensor with respect
to four spacetime coordinates followed by a
number of summation over the repeated in-
dices. The purported nature of such opera-
tion often leads to endless number of errors.
A suitable computer programme capable
of doing symbolic calculation can perform
such calculation in a error-free way within
a very short span of time. In this section
we present some MATHEMATICA® note-
book code to calculate the tensorial objects
for any arbitrary metric tensor (Grey Box on-
line) and list them systematically (Red Box
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online). The flowchart of their evaluation is
given below (Download MATHEMATICA®

NOTEBOOK file here or our Github reposi-
tory):

Code I: Define list of four space-
time coordinates (x1,x2,x3,x4):

x = List[x1,x2,x3,x4]/.{x1→ ♣,
x2→ ♣, x3→ ♣, x4→ ♣};

where ♣ be the unknown parameter which
we need to be supplied externally.

Code II: Define the covariant
metric tensor (gcv) for a given
line-element, find corresponding
contra-variant (gct) metric ten-
sor and check their orthogonality
(orthg):

gcv = Table[0,{α, 4}, {β, 4}];
Now supply nonzero components of gcv, for example, gcv[[1, 1]]= −eλ[r],
gcv[[2, 2]]= −r2, gcv[[3, 3]]= −r2 sin2 θ, gcv[[4, 4]]= eν[r].

gct = Simplify[Inverse[gcv]]; MatrixForm[gct]

orthg = FullSimplify[gcv.gct]; MatrixForm[orthg]

Code III: Calculation of Christoffel symbols (Γ) from Eq.(6):

Γa= FullSimplify[Module[{α, β, γ, δ}, Table[Sum[1
2gct[[ρ, γ]]

(D[gcv[[γ, α ]],x[[β]]+ D[gcv[[γ, β]], x[[α]]-D[gcv[[α, β]], x[[γ ]])];

Code IV: List of components of the Christoffel Symbol:

listaffine := Table[If[UnsameQ[Γ[[α, β, γ]],0],
{ToString[TraditionalForm[Γx[[α]]

x[[β]],x[[γ]] ] ], “=”, Γa[[α, β, γ]] }],
{α, 4}, {β, 4}, {γ, 4}]
TableForm[DeleteCases[Flatten[listaffine,2],Null], TableSpacing→ {1, 1}]

Code V: Calculation of covariant Riemann curvature tensor (Reim) from Eq.(10):

Riem=Simplify[Module[{α, β, γ, δ, ρ},Table[ D[Γa[[ρ, α, γ]],x[[β]]]-

D[Γa[[ρ, α, β]],x[[γ]] ] +Sum[ Γa[[δ, α, γ]] Γa[[ρ, β, δ]] , {δ, 4} ] -Sum[
Γa[[δ, α, β]] Γa[[ρ, β, δ]] , {δ, 4}], {α, 4}, {β, 4}, {γ, 4}, {ρ, 4} ]] ];
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Code VI: Calculation of covariant Ricci tensor (Ricicv) from Eq.(11):

Ricicv =

Simplify[Module[{α, β, γ, δ},Table[Sum[D[Γa [[ρ, α, β]],x[[ρ]]],{ρ, 4}]-
Sum[D[Γa [ρ, α, ρ]],x[[β]]],{ρ, 4}] + Sum[Γa [[σ, α, β]] Γa [[ρ, ρ, σ]],

{σ, 4}, {ρ, 4}] - Sum[Γa [[σ, α, ρ]] Γa [[ρ, β, σ]], {σ, 4}, {ρ, 4}] ] ];

Code VII: List of components of covariant Ricci Tensor:

listRicicv := Table[If[UnsameQ[Ricicv[[α, β]],0],
{ToString[TraditionalForm[Rx[[α]],x[[β]]] ] , “=”, Ricicv[[α, β]] }], {α, 4}, {β, 4}]
TableForm[DeleteCases[Flatten[listRicicv,1], Null],TableSpacing→ {1, 1}]

Code VIII: Calculation of Ricci scalar (Rc) from Eq.(11)

Rc=

Simplify[Module[{α, β},Sum[gct[[α, β]] Ricicv[[α, β]],{α, 4}, {β, 4}] ] ];

Code IX: Calculation of Einstein covariant tensor (Gmncv) from Eq.(12);

Gmncv=

Simplify[Module[{α, β},Table[(Ricicv[[α, β]]- 1
2

gcv[[α, β]] Rc),{α, 4}, {β, 4}] ] ];

Code X: List of components of Covariant Einstein Tensor:

listGmncv := Table[If[UnsameQ[Gmncv[[α, β]],0],
{ToString[TraditionalForm[Gx[[α]],x[[β]]] ] , “=”, Gmncv[[α, β]] }], {α, 4}, {β, 4}]
TableForm[DeleteCases[Flatten[listGmncv,1], Null],TableSpacing→ {1, 1}]

Code XI: Calculation of mixed Einstein tensor (Gmnmx);

36/1/8 6 www.physedu.in



Physics Education January - March 2020

Gmnmx=

Simplify[Module[{α, β, γ},Table[Sum[gct[[α, γ]] Gmncv[[α, β]]{γ, 4},{α, 4}, {β, 4}
] ]\, ];

Code XII: List of components of mixed Einstein Tensor:

listGmnmx := Table[If[UnsameQ[Gmnmx[[α, β]],0],
{ToString[TraditionalForm[Gx[[α]]

x[[β]]] ] , “=”, Gmnmx[[α, β]] }], {α, 4}, {β, 4}]
TableForm[DeleteCases[Flatten[listGmnmx,1], Null],TableSpacing→ {1, 1}]

Code XIII: Calculation of Geodesic (Orbit) equations (Geodesic) from Eq.(17):

Geodesic=

Module[{α, β, γ, s}, Table[Simplify[D[x[[α]][s],{s, 2}]+
Sum[Γa[[α, β, γ]]*D[x[[β]][s],s]*D[x[[γ ]][s],s], {β, 4}, {γ, 4}]],{α, 4}]];

Code XIV: List of components of geodesic equations

TableForm[Geodesic] // ExpandAll

In Code XIV, each expression of the list
should be equated to zero to obtain required
geodesic equations of point mass and light
in a given spacetime.

Using above set of codes, it is easy to
evaluate various tensorial quantities for any
arbitrary spacetime described by the metric
tensor.

3.2 Application to some simple metrics:

The generic metric of a coordinate system is
given by

ds2 = gµνdxµdxν (18)

where gµν = gµν(x1, x2, x3, x4) = (r, ct) be
the covariant metric tensor.

1. Minkowski space in cartesian coordinate:

Step I: This spacetime is described by
the line element,

ds2 = dt2 − dx2 − dy2 − dz2, (19)
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where the coordinates of the system are
cartesian, i.e.,

x1 → x, x2 → y, x3 → z, x4 → t.
(20)

Step II: The components of the metric
tensor (c = 1) are,

g11 → −1, g22 → −1, g33 → −1,

g44 → 1, (21)

which are constant. Thus in the
Minkowski spacetime, the Cristoffel
symbol vanishes and hence Riemann
curvature, Ricci and Einstein tensors
become trivial.

2. Minkowski space in spherical polar coordi-
nate:

Step I: The line element in this coordi-
nate system is given by

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2,
(22)

where coordinates are,

x1 → r, x2 → θ, x3 → φ, x4 → t. (23)

Step II: The components of metric ten-
sor directly read off from the line ele-
ment Eq.(22) are,

g11 → −1, g22 → −r2,

g33 → −r2 sin2 θ, g44 → 1.(24)

Step III: The non-vanishing Cristoffel
symbols are found to be,

Γθ
rθ =

1
r

, Γr
θθ = −r , Γr

φφ = −r sin2 θ

Γθ
φφ = − cos θ sin θ , Γφ

rφ =
1
r

,

Γφ
θφ = cot θ . (25)

Using the programmes (Code-V to X),
the Reimann curvature, Ricci and Ein-
stein tensors are found to be zero which
indicates that in the spherical polar co-
ordinate the Minkowski spacetime is in-
trinsically flat.

3. Schwarzschild spacetime (Static, spheri-
cally symmetric and non-rotating object):

Step I: The line element of
Schwarzschild spacetime is given
by

ds2 = γMdτ2 − 1
γM

dr2

−r2(dθ2 + sin2 θdφ2), (26)

where, unlike previous cases, the met-
ric tensor is now space-dependent, i.e.,
γM = γM(r). The coordinates of such
system is same as the spherical polar co-
ordinate system, i.e.,

x1 → r, x2 → θ, x3 → φ, x4 → t.
(27)

Step II: The components of metric ten-
sor read off for such system are,

g11 = − 1
γM

, g22 = −r2,

g33 = −r2 sin2 θ, g44 = γM, (28)

Step III: The non-vanishing Cristoffel
symbols are given by
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Γt
tr =

γ′M
2γM

, Γr
tt =

1
2

γMγ′M,

Γr
rr = −

γ′M
2γM

, Γr
θθ = −rγM,

Γr
φφ = −rγM sin2 θ, Γθ

rθ =
1
r

Γθ
φφ = − cos θ sin θ, Γφ

rφ =
1
r

,

Γφ
θφ = cot θ (29)

where γ′M be the derivative of γM with re-
spect to r. The derivation of the factor γM

and the geodesic equation in Schwarzschild
spacetime is given in Section.5. Finally we
note that our code can be easily extended
for spacetime for the line element contain-
ing nonzero off-diagonal terms.

4 Geodesic equation in

Minkowski spacetime

Before passing to GTR, let us ask ‘what
would be the trajectory of light or a free
particle in the Minkowski space-time?’. In
spherical polar coordinate, using Codes I
to IV, we obtain the non-vanishing Cristof-
fel symbols given by Eq.(17), and then, by
executing Code XIII-XIV, we get following

geodesic equations,

d2t
dτ2 = 0 (30a)

d2r
dτ2 − r

( dθ

dτ

)2
− r sin2 θ

(dφ

dτ

)2
= 0 (30b)

d2θ

dτ2 +
2
r

( dr
dτ

)( dθ

dτ

)
− cos θ sin θ

(dφ

dτ

)2
= 0 (30c)

d2φ

dτ2 +
2
r

( dr
dτ

)(dφ

dτ

)
+ 2 cot θ

( dθ

dτ

)(dφ

dτ

)
= 0. (30d)

Eq.(30a) readily gives dt
dτ = constant and as-

suming it to be Lorentzian factor γ, we ob-
tain the well known time dilation law of spe-
cial theory of relativity,

dt
dτ

= γ. (31)

Now if we restrict ourselves to work on a
plane by setting θ = π/2, Eq.(30c) becomes
trivial, while Eqs.(30b) and (30d) are simpli-
fied to,

d2r
dτ2 − r

(dφ

dτ

)2
= 0, (32a)

d2φ

dτ2 +
2
r

( dr
dτ

)(dφ

dτ

)
= 0, (32b)

respectively. From Eq.(32b) we obtain the
angular momentum conservation law,

d
dτ

(
r2 dφ

dτ

)
= 0 ⇒ r2

(dφ

dτ

)
= h, (33)

where h the conserved angular momentum.
Now plucking back Eqs.(33) into Eqs.(32a)
we obtain,

d
dτ

(( dr
dτ

)2
+

h2

r2

)
= 0

⇒
( dr

dτ

)2
+

h2

r2 = −ε, (34)
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where ε be a constant. Finally noting the fact
that,

dr
dτ

=
dr
dϕ

dϕ

dτ
=

h
r2

dr
dϕ

, (35)

Eq.(34) gives the requisite ‘orbit equation’ in
Minkowski spacetime in r− φ plane,

1
r4

(
dr
dϕ

)2

+
1
r2 = − ε

h2 . (36)

At closest distance of approach r = r0, the
derivative in Eq.(36) vanishes and we obtain
ε = − h2

r2
0
. Plucking it back into Eq.(36), we

obtained its solution given by the integral,

ϕ(r) = ±
∫ dr

r2
√

1
r2 − 1

r2
0

. (37)

The angle of deflection of the starlight due
to a typical star is measured by the formula
[4]

α̂ = 2∆ϕ− π, (38)

where ∆ϕ = ϕ(r∞) − ϕ(r0). Integration of
Eq.(37), in the limit r → ∞, gives ∆ϕ = π

2
and the angle of deflection of the starlight is
found to be,

α̂ = 0, (39)

which indicates that the bending of light is
impossible in the Minknowski spacetime.

5 Schwarzschild solution

5.1 Solution of Einstein’s field equation

In 1916, Karl Schwarzschild gave the exte-
rior solution of the Einstein equation for a
static, non-rotating and spherically symmet-
ric object in vacuum (Tµν = 0). To find the

metric tensors for this spacetime, we con-
sider the line element to be,

ds2 = B(r)dt2 − A(r)dr2

−r2(dθ2 + sin2 θdφ2). (40)

Here A(r) and B(r) are the unknown terms,
which tend to unity in the asymptotic limit
(r → ∞), are to be determined. Using Code I
to X, non-vanishing components of the Ein-
stein tensors are given by,

r
dA(r)

dr
+ A2(r)− A(r) = 0, (41a)

r
dB(r)

dr
− A(r)B(r) + B2(r) = 0. (41b)

The solution of Eq.(41) is given by,

A(r) =
1

1− eC1
r

, (42a)

B(r) = (1− eC1

r
)C2, (42b)

where C1 and C2 are two constants. To
get the Minkowski metric in the asymptotic
limit we must choose C1 = ln(2M), C2 = 1
and thus Schwarzschild metric reads,

ds2 = γMdτ2 − 1
γM

dr2

−r2(dθ2 + sin2 θdφ2), (43)

where the general relativistic correction fac-
tor γM is given by,

γM = (1− 2M
r

), (44)

which, as expected, tends to unity for
2M

r << 1.
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5.2 Geodesic equation in Schwarzschild

space-time

In this Schwarzschild spacetime, the non-
vanishing Christoffel symbols are given in
Eqs.(29), while the corresponding geodesic
equations are obtained by Codes XI and
XII, respectively. In particular, unlike the
geodesic equations in the Minkowski space-
time, we note that Eqs.(30a) and (30b) are
generalized to

d2t
dτ2 −

γ′M
γM

( dr
dτ

)( dt
dτ

)
= 0, (45a)

d2r
dτ2 −

γ′M
2γM

( dt
dτ

)2
+

γMγ′M
2

( dr
dτ

)2

− rγM

{( dθ

dτ

)2
+ sin2 θ

(dφ

dτ

)2}
= 0 (45b)

while, Eqs.(30c) and (30d) remain un-
changed. Taking θ = π

2 , which corre-
sponds to the particle moving in the equa-
torial plane, Eq.(45b) is simplified to,

d2r
dτ2 −

γ′M
2γM

( dr
dτ

)2
+

γγ′M
2

( dt
dτ

)2

−rγM

(dφ

dτ

)2
= 0, (46)

while Eq.(45a) can be written as

d
dτ

(
ln
[
γM

dt
dτ

])
= 0 ⇒ dt

dτ
=

E
γM

, (47)

with E be a constant to be evaluated from
some boundary condition. Plucking it back
into Eq.(46) yields,

d2r
dτ2 −

γ′M
2γM

( dr
dτ

)2
+

E2γ′M
2γM

− h2γM

r3 = 0,

(48)

which can be further simplified to

d
dτ

[ 1
γM

( dr
dτ

)2
− E2

γM
+

h2

r2

]
= 0

→ 1
γM

( dr
dτ

)2
− E2

γM
+

h2

r2 = −ε. (49)

Finally using Eq.(33) we can write Eq.(49) in
terms of the azimuth angle φ which gives
the desired ‘Orbit Equation’ in Schwarzschild
spacetime,

1
γMr4

(
dr
dϕ

)2

+
1
r2 −

E2

γMh2 = − ε

h2 . (50)

At distance r = r0, γM = γM0 , (dr/dϕ) = 0
and Eq.(50) gives

E =

√√√√γM0

(
ε +

h2

r2
0

)
, (51)

where γM0 be the value of γM at r = r0 i.e.,
γM0 = 1− 2M

r0
. Finally substituting back the

value of E in Eq.(45a), we obtain the ‘time
dilation’ law for GTR,

dt
dτ

= γG(r0, M, h), (52)

where,

γG(M, r0, h) =
1

γM

√
γM0

(
ε +

h2

r2
0

)
. (53)

Unlike Eq.(31) of the Minkowski spacetime,
we note that the ratio of the incremental co-
ordinate time and proper time is function
of r, h, M0, r0, respectively. The solution of
Eq.(50) is given by,

ϕ(r) = ±
∫ dr

r2(γM)1/2
√

E2

h2γM
− 1

r2 − ε
h2

,

(54)
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which is the Schwarzschild counterpart of
Eq.(37) in Minkowski spacetime. In the
next Section, we shall study the solution of
Eq.(54) to find the trajectory of light and a
point mass in Schwarzschild geometry, re-
spectively.

5.3 Effective potential in Schwarzschild

geometry

To find the effective potential in
Schwarzchild geometry, from Eq.(49)
we have [3],

1
2

E2 =
1
2

( dr
dτ

)2
+ USch

e f f
2
(r), (55)

where the effective potential is given by

USch
e f f

2
(r) =

h2

2r2 −
h2M

r3 +
ε

2

(
1− 2M

r

)
. (56)

1. Material particle (ε = 1): Minimizing the
effective potential USch

e f f (r) at r = rM we
obtain

rM =
h2 ± h

√
h2 − 12M2

2M
. (57)

Setting h = 2
√

3M, we obtain the orbit
with smallest possible radius, namely,

rmin
mat = 6M. (58)

for the material particle.

2. Light (ε = 0): Similarly minimizing the
effective potential the minimum radius
for light is found to be,

rph = 3M. (59)

This minimal sphere of this radius is of-
ten referred as ‘Photon sphere’.

Comparing the effective potentials of the
point mass (ε 6= 0) and massless particle
(ε = 0) in Schwarzschild spacetime, where
we note that in GTR both of them can be
trapped to form a bound state.

6 Experimental tests of GTR

In this section we study the trajectory of
light and material particle from the orbit
equation given by Eq.(48) and its solution
Eq.(54), respectively. These orbits are gen-
erally classified as the unbound (ε = 0) and
bound orbit (ε 6= 0) which explain the bend-
ing of starlight and the perihelion precession
of mercury, respectively.

6.1 Motion of light in the unbound orbit

- Bending of light ray:

To discuss the deflection of light (ε = 0)
grazing out from a star like sun at closest
distance of approach (r = r0), we find from
Eq.(51),

E = ±
h√γM0

r0
. (60)

Substituting Eq.(60) along with γM and γM0

in Eq.(54) we obtain,

∆ϕph =
∫ ∞

r0

dr f (r; r0, M), (61)

where, ∆ϕph = ϕph(r∞) − ϕph(r0) and the
integrand f (r; r0, M) is given by,

f (r; r0, M) =

√
r

r−2M

r2
√

r(r0−2M)

r3
0(r−2M)

− 1
r2

. (62)
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The solution of above integral cannot be ob-
tained exactly and there exists many ap-
proximate methods to solve it. Here we

present a direct calculation of the deflec-
tion angle using NIntegrate program of
MATHEMATICA®,

In[11] = α̂ph = (2 NIntegrate[f, r, ♣, Infinity]− π)
180× 60× 60

π

Taking the spherical body as a proto-
type star like sun, i.e.,

M = M� = 1.989× 1030kg,

r0 = R� = 6.95× 105km,
M�G

c2 = 1.457km, (63)

and taking template ♣ → R�, the deflec-
tion angle is found to be α̂

M�
ph = 1.75003 arc-

second. In 1919, Sir Arthur Eddington and
his team verified the bending of starlight
during total solar eclipse [12]. It is worth
mentioning here that, the radius of the pho-
ton sphere of the sun is rph = 3M� ≡ 4.425
km obtained from Eq.(59) lies well within
the sun, i.e., rph << R�. On the contrary, for
a ultra-compact object like a black hole, the
photon sphere is quite large and falls out-
side that object. In consequence, the bend-
ing of light for such objects is quite consider-
able. Finally we mention here that the bend-
ing of light leads to a unique phenomenon
known as ‘Gravitational Lensing’, which is
another spectacular outcome of GTR.

6.2 Motion of particle in bound orbit -

perihelion shift of planets

We finally consider the motion of a test par-
ticle (ε 6= 0) orbiting around the sun in an
elliptical orbit. At perihelion r = rP and at
aphelion r = rA, dr

dφ vanishes in Eq.(50) and
we get two values of the constants,

ε = h2 r2
AγMP − r2

PγMA

r2
Pr2

A(γMA − γMP)
, (64a)

E = ±h

√
γMA γMP

γMA − γMP

r2
A − r2

P
r2

Ar2
P

, (64b)

where, γMA = 1− 2M
rA

and γMP = 1− 2M
rP

,
respectively. Plucking back these values in
Eq.(54) we obtain,

∆ϕP(r) =
∫ rA

rP

f (r; M, rP, rA)dr (65)

where ∆ϕP = ϕ(rP) − ϕ(rA) is referred as
the perihelion shift of the given planet and f
is given by,

f (r; M, rP, rA)

=

√
r

r−2M

r2
√

(r−rA)(r−rP)[rrArP−2M{rArP+r(rA+rP)}]
(2M−r)r2r2

Ar2
P

,

(66)
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Once again the integral can be done
numerically using following program of

MATHEMATICA®,

In[5] = α̂P =
365.25
♣ (2 NIntegrate[f, {r, rP, rA}]− π)

180× 60× 60
π

.

Substituting the values of rA, rP and ♣ (Pe-
riod in days) into above programme, we ob-
tain the value of perihelion shift of all plan-

ets per century including Mercury. In Table-
I, we have compared the perihelion shift of
different planets with corresponding obser-
vational values:

Table: Perihelion shift of planets (in arc-sec per century)
Planet rP (in km) rA (in km) Period in days (♣) α̂th α̂obs [13]
Mercury 4,60,01,200 6,98,16,900 87.97 42.9334 42.9
Venus 10,74,76,359 10,89,42,109 224.70 8.6233 8.6
Earth 14,70,98,074 15,20,97,701 365.35 3.8364 3.8
Mars 20,66,69,000 24,92,09,300 686.97 1.3438 1.3
Jupiter 74,05,73,600 81,65,20,800 4331.57 .0622 .06
Saturn 135,35,72,956 151,33,25,783 10,759.22 .0136 .014
Uranus 274,89,38,461 300,44,19,704 30,799.10 .0024 .002
Neptune 445,29,40,833 455,39,46,490 60,190.00 .0007 .0007

We note that the observational value of the
perihelion shift of all planets coincides with
the theoretical results predicted by GTR.
This striking success of GTR has established
it as a complete theoretical model of gravita-
tion.

7 Conclusion and outlook

This paper gives a cursory overview of Gen-
eral Theory of Relativity perceivable to the
UG students. We presuppose that, the
UG students have a rudimentary knowl-
edge of Reimaniann geometry from their
regular course and familiar with the tenets
of basic MATHEMATICA® code to under-
take this study as a unsupervised (or as a
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project with minimal supervision) review
project. A set of easy-to-do command-
line MATHEMATICA® code is developed
to solve the cumbersome tensorial quanti-
ties and to solve the orbit equations numeri-
cally. We have explicitly calculated the mag-
nitude of the bending of light and perihe-
lion shift of all planets including Mercury
which are precisely in agreement with ob-
servational result. Apart from the UG stu-
dents, our code of obtaining the orbit equa-
tion in arbitrary spacetime may be helpful
for the graduate freshmen who often need
to deal with wide class of metric with sev-
eral nontrivial attributes.
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