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Abstract

A Dozen Beautiful Equations that has helped

the Evolution of Physics and Mathematics are

compiled. Each is a gem and gave rise to entire

tower of applications in many fields beyond

where it originated. The names associated with

each one of them defines the genius of their

time and celebrated for all subsequent eternity.

1 Baudhayana - Pythagoras

Theorem

The equation

x2 + y2 = z2

where x, y and z are the lengths of base,
height and hypotenuse for every right an-
gled triangle is well known to all high school
students. This theorem is usually attributed
to Greek scholar Pythagoras[1](c. 570 - c.

Figure 1: Pythagoras

475 BC). We now know that Baudhayana
(around 800 BC), a Vedic scholar had a for-
mulation of the same theorem in his Sulba
Sutra, a manuscript with several mathemat-
ical gems. It says: “A rope stretched along
the length of the diagonal (of a rectangle)
produces an area which the vertical and hor-
izontal sides make together.”[2]

If x, y and z are, in addition integers,
they form what is known as a Pythagorean
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triple. The set {3, 4, 5} and {5, 12, 13} are
two well known examples. Note that if a, b
and c form a triple, it is easy to see that ka, kb
and kc with any integer value k is also one.
There are infinitely many such distinct sets
and each will generate additional sets. Sulba
Sutra gives prescriptions to identify a class
of such triples.1

Incidentally, the French mathematician
Pierre de Fermat, in 1637, conjectured that
there are no integer valued solution for x, y
and z to the equation

xn + yn = zn

for any integer n > 2. The proof for the cor-
rectness of the conjecture remained elusive,
even though Fermat himself had remarked
in his copy of Arithmetica, an Ancient Greek
text on mathematics written by the mathe-
matician Diophantus in the 3rd century CE
“that he has found a proof”, but he had
added that “it can not fit in the margins of
his note book with him to jot down”. He
never published the proof. Most likely the
alleged proof, that he had, was flawed. It
needed several sophisticated developments
in the field of Differential Geometry for the
British Mathematician Andrew Wiles to pro-
vide an unequivocal proof for the validity of
Fermat’s conjecture in 1995, earning for him
the laurels of Abel Prize in the year 2016.

2 Napiers Theorem

Next example of remarkable Equations is:

log x + log y = log xy; x > 0, y > 0

Logarithm is a a mathematical function that
maps the operation Multiplication into Ad-
dition. The logarithm of the multiplica-
tive product of two numbers, is a sum of
their logarithms. This opens up a beautiful
plethora of possibilities in very many fields.
A Scottish Mathematician John Napier is
identified with discovering and developing
logarithms[3]. He developed a tool set for
multiplications - which were referred to as
Napier’s Logs, which are the logarithm ta-
bles, that we used in our school days. They
formed the principle for the Slide Rule that
most engineers and surveyors used to carry
before the advent of modern electronic cal-
culators.

This is in a sense, inverse of the opera-
tion of ’raising a number to some power’.
Let us take a number 10, raise it to its 3rd
power, meaning 10 × 10 × 10 denoted as
103 = 1000. Indeed it is easy to see that
103 × 102 = 103+2 = 105. Generalising,

10x × 10y = 10x+y x, y any real number.

Further generalising, the base 10 can be
replaced by any positive number; a par-
ticularly interesting choice is the transcen-
dental number called Euler’s constant e =

2.718281828459.....

ex × ey = ex+y x, y any real number.

Let us get back to logarithms. The
function has an attribute called base, which

1. All images are downloaded from Wikipedia,
mostly copies of portraits from some archive.
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Figure 2: John Napier, Scottish National
Gallery

could be taken as either 10, e, 2 or any posi-
tive number; log10 x when the base is 10 and
loge x if the base is Euler constant e. If we
denote y = log10 x then x = 10y. Similarly if
y = loge x then x = ey, which is referred to
as the exponential function.

The tables of logarithms with base 10
computed upto required decimals (tables of
4 decimal places was in common usage in
schools during our time ∼ 1950’s) used to
serve as a devise to quickly carry out mul-
tiplication of numbers. When two numbers
are to be multiplied, instead of carrying out
usual multi-step algorithm, one may more
simply add their logarithms to get the log-
arithm of their product and look at the ta-
ble of what is referred to as anti-logarithms
to read off the number correct upto desired
number of decimals. Often when we write
log x it is implied that the base is 10.

When the base is e, the logarithm is

referred to as ’natural logarithm’ and de-
noted as ln x. It is also often referred to as
’Napierian logarithms’. Since the exponen-
tial function has a representation as a power
series :

ex = 1+ x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · =

∞

∑
n=0

xn

n!
.

as x increases, the function increases faster
than any polynomial. The functions
{xn, 1 > n > 0}, like polynomials (for ex-
ample xk any k ≥ 1), are also monotoni-
cally increasing function, however growing
slower than linear functions. The logarith-
mic functions are also increasing function as
x changes but with rate even slower than
those of fractional power. We may note that
the above expression for ex also provides us
a definition of the Euler constant e through

e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · =
∞

∑
n=0

1
n!

.

The base 2, called bit is used, naturally, in
information science.

3 Leibniz Differential Calculus

The equation that was arrived at, indepen-
dently by Leibniz and Newton, formed the
foundation of classical analysis[4][5]:

dy
dx

= lim
δ→0

y(x + δ)− y(x)
δ

If there are two variables, say, position of an
object x and time t, x vs t or x(t) provides us
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Figure 3: Gottfried W Leibniz

a trajectory. The rate at which x varies at any
instant is given by dx

dt and hence v(t) = dx
dt

is a derivative of x(t). We may picture the
trajectory in a graph with ordinates x and
t. We can visualise the derivative v as the
tangent drawn at every point on the x vs
t curve as illustrated on the figure below.
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0
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t

f (t) = 2 t2

y = f ′(t) = 4 t

The process of the differentiation brings
about the notion of continuity and the lim-
iting process. We recognise that the speed
when defined as a (finite) distance travelled
in a (finite) interval of time as being average
speed in that duration. The notion of veloc-
ity at an instant requires this to be computed
as a limit process of infinitesimal displace-
ment over an infinitesimal interval of time.
We begin the era of precision analysis.

We may here add a remark that Differ-

ential and Integral Calculus and many pio-
neering mathematical theorems indeed orig-
inated in India from about mid 14th cen-
tury (Madhava School) to about 1620. Yuk-
tibhasa, mainly based on Nilakantha’s Tantra
Samgraha in Sanskrit is considered, possibly
the first text on the foundations of Calcu-
lus and pre-dates those of European math-
ematicians. Madhava’s treatment is more
precise and reflects erudite Mathematics it
embodied, a fact not fully appreciated by
the modern Historians of Mathematics. [6]

2 4 6 8 10

2

4

x

y
y = 1/x

We perceive that physical properties
can be described by continuously vary-
ing functions. Their derivatives enabled
through differentiation are also physical ob-
servables. Physical law in view of its
smooth behaviour are described by Differ-
ential Equations. The inverse process of Dif-
ferentiation is Integration. Graphically dif-
ferentiation is to determine the tangent to
the curve and the process of integration is
the measure of the area swept by the curve
over an interval. If y = f (x) then y′ = d f

dx is
the derivative function. The inverse process
is f (x) =

∫
dxy′ =

∫
dx d f

dx . The derivative
of xn is nxn−1 Naturally

∫
dxxn = xn+1

n+1 .

The derivative of ln x is 1
x and hence we
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have a neat definition for the function ln x:

ln x =
∫

dx
1
x

,

ln x− ln x0 ≡ ln
x
x0

=
∫ x

x0

dx
1
x

.

The area under the curve in the second
graph is geometric way to get the logarith-
mic function.

4 Newton - Laws of Motion, Law

of Gravity

British Scientist Isaac Newton is identified
with two different iconic equations, one
which lays the foundation for classical dy-
namics and the other spells out Universal
Law of Gravitation.

The three laws of motion by Newton
are[7]:
1. A body continues to be in a state of rest
or uniform motion unless acted upon by a
force on it.
2. A system of mass m accelerates on the ap-
plication of a force on it such that

m
d2x
dt2 = F,

or equivalently

dp
dt

= F.

where x and p are respectively the position
and momentum attribute of the body or
system.
3. In an isolated system, for every force
acted upon a body there is an equal amount

Figure 4: Isaac Newton

and oppositely directed reaction by the
body on the agency that exerts force. These
sum up the firm foundation of the classical
dynamics and lets us understand the nature
of inertia. Note that the acceleration of the
body is proportional to the force whatever
be the nature of force (gravitational, elec-
trical or frictional and whatever) and the
quantum of acceleration is proportional to
its mass, which measures its inertia. It is
also referred to as inertial mass min. Forces
come in many forms. Electric Forces act on
bodies with electric charge, magnetic forces
on electric current. Gravitational forces are
exerted by all bodies, the magnitude of the
force proportional to its mass content. Two
bodies of mass m and M exert mutual at-
traction to each other and follows Newton’s
Universal Law of Gravitation[7]:

F =
GNmM

r2 Fgravity = −GmM
r2 r̂.

GN is Newton’s gravitation Constant

It is remarkable that this equation is respon-
sible for all planets to exhibit elliptical tra-
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jectory about Sun; and a near circular, but
really elliptical orbit of moon about earth;
- as well as how the legendary apple from
the tree allegedly fell on the head of New-
ton. That the forces are universal and do
not depend on the detailed composition of
the body is important to note. The magni-
tude of the gravitational force is indeed pro-
portional to its mass that thus quantifies its
gravitational content. To distinguish from
the earlier definition, we may term this as
gravitational mass mgr.

Observe that the two definitions of
mass, the first signifying the amount of iner-
tia and the second arising from it being the
source of gravitational force field need not
be the same. That they indeed are, is due
to universal nature of gravity, which we be-
come first aware through a remarkable ex-
periment carried out by Galileo; who found
that the time taken by two different bodies,
say one heavy and the other light or one of
stone and another some metal, from the top
of leaning tower of Pisa to the ground was
exactly identical. The force experienced by
the body is proportional to mgr and the ac-
celeration it induces on it is proportional to
1/min, implying for the time taken to differ
if the ratio mgr/min for different bodies vary.
The absence of such variation allows us to
identify both masses to be the same. This
classic experiment, rather profound, was re-
peated, with enhanced precision by Hun-
garian Physicist Eötvös with the use of an
ingenious torsion balance at the start of last
century[8], firmly establishing universality

Figure 5: Leonhard Euler

of gravity.
Thus begins the glorious era of Classical

Mechanics.

5 Euler’s Identity - The Beautiful

Equation

eiπ + 1 = 0

Euler’s identity is beautiful because it com-
bines five of the most important constants
(numbers) in mathematics into a single ele-
gant equation.[9]
1 – the basis of all numbers in the set and

the multiplicative identity
0 – the symbolic concept of nothingness and
the additive identity
π – the ratio of a circle’s circumference to its
diameter (π = 3.14159 . . . )
e – the base of natural logarithms which oc-
curs widely in mathematical analysis (e =

2.718 . . . ).
i – the “imaginary” number, representing
square root of -1, i =

√
−1.

Interestingly a combination of two entirely
different transcendental quantities can be
combined together to become an integer!
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The identity brings five of the super-heroes
of mathematics (e, i, π, 1, 0) together with
three of the basic arithmetic operations (ad-
dition, multiplication, and exponentiation).

We quote Benjamin Pierce, a noted
American 19th-century philosopher, mathe-
matician, and a professor at Harvard: “· · ·
is absolutely paradoxical; we cannot under-
stand it, and we don’t know what it means,
but we have proved it, and therefore we
know it must be the truth.”

A study has also, it seems, shown that
Euler Identity is so beautiful that it excites
the same areas of the brain as a great piece
of music or art would.

In a sense this is not that much surpris-
ing because the exponential of a complex
variable z is a product of two parts: ez =

ex+iy = exeiy = ex(cos y+ i sin y). ex is either
rapidly growing function when x > 0 or de-
caying one if x < 0. Both real and imaginary
parts of eiy oscillate between ±1. It is clear
that when z = inπ, ez is integer valued ±1,
positive when n is even and negative when
n is odd.

6 D’Alembert Wave Equation &

Fourier Heat Equation

∂2

∂t2 u(x, t) = c2 ∂2

∂x2 u(x, t)

is a partial differential equation derived
by a French Mathematician Jean le Rond
d’Alembert, in 1747 as the equation to solve
the problem of a vibrating string[10]. It is

Figure 6: Jean le Rond d’Alembert

a prototype equation with a wide range of
applications, describing the phenomena of
all kinds of wave motions - acoustic waves,
temperature (heat) waves, electromagnetic
waves are some of the classic examples.

A generic solution of the equation
is u(x, t) = u0 ei(kx−ωt+φ); k = 2π

λ ,
ω
c = 2πν

c . It can also be written as
u(x, t) = u0 sin (2πx

λ − 2πνt + φ) with
the condition νλ = c, oscillatory functions
period λ in length and period T in time (or
frequency ν = 1/T).

Partial differential equations find appli-
cations in many branches of Physics and
Engineering and the d’Alembert equation
and the analogue Laplace equation together
with boundary conditions defines many
phenomena. For the one dimensional sec-
ond order linear equation above, the solu-
tion has two constants, such as u0, φ are
fixed by two boundary condition, say by
specifying u(x, 0) and du

dt |t=0.

In three dimensions the analogous
equation is

(
∂2

∂t2 − c2∇2
)

u(x, t) = 0.

In physics and mathematics, the heat
equation is a partial differential equation
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Figure 7: Joseph Fourier

that describes how the distribution of some
quantity (such as heat) evolves over time in
a medium, as it flows from places where the
temperature is higher towards places where
it is lower. It is similar to diffusion equa-
tion, relevant for flow of fluid from higher
pressure region to one that is lower. This
equation was first developed and solved by
Joseph Fourier in 1822 to describe heat flow
and hence is the name[11]. It is of fun-
damental importance in diverse scientific
fields. With D as the diffusion constant, it
takes the form

∂

∂t
u(t, x) = D

(
∂2

∂x2
i
+

∂2

∂x2
j
+

∂2

∂x2
k

)
u(t, x)

The heat equation is the prototype exam-
ple of a parabolic partial differential equa-
tion. If the solution is separable in variables,
say time and space in the form u(t, x) =

A(t) f (x) it is seen that the partial differen-
tial equation reduces to coupled ordinary
differential equations. For example, the
equation

∂u
∂t

= D
∂2u
∂x2

Figure 8: Claude-Louis Navier

becomes
dA
dt

f = DA
d2 f
dx2

dA
dt

= −k2DA and
d2 f
dx2 = −k2 f

A ∼ e−k2Dt and f (x) ∼ sin(kx + φ).

If the boundary condition is such that u(t =
0, x) = f (x) and u(t, 0) = u(t, L) = 0 then
kL = nπ, leading to most general solution
in the form:

u(t, x) ∼ e−
n2π2

L2 Dt sin
(nπx

L
+ φ

)
.

7 Navier - Stokes Equation

The Navier-Stokes equation, in modern
notation, is

∂u
∂t

+ (u · ∇)u = −∇P
ρ

+ ν∇2u

where u is the fluid velocity vector, P is
the pressure, ρ is the density, ν is the kine-
matic viscosity of the fluid, and ∇2 is the
Laplace operator. Navier-Stokes equation,
in fluid mechanics, is a partial differential
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Figure 9: George Stokes

equation that describes the flow of incom-
pressible fluids. The equation is a gener-
alization of the equation by Swiss mathe-
matician Leonhard Euler in the 18th cen-
tury obtained to describe the flow of in-
compressible and frictionless fluids. In 1821
French engineer Claude-Louis Navier intro-
duced the element of viscosity (friction) for
the more realistic and vastly more difficult
problem. Throughout the middle of the 19th
century, British physicist and mathemati-
cian Sir George Gabriel Stokes improved on
this work, though complete solutions were
analytically possible only for a few simple
two-dimensional flows. In view of the non
linear nature, closed analytical solutions are
not an available option. The complex vor-
tices and turbulence and chaos, that occur
in three-dimensional fluid (liquid or gas)
flows as velocities increase have proven in-
tractable to any but approximate numerical
analysis methods. We look for solutions in
different regimes, characterised by a dimen-
sionless Reynold number, which, in effect,
is the ratio between the inertial forces in a
fluid and the viscous forces. A fluid in mo-
tion tends to behave as sheets or layers of

infinitely small thickness, sliding relative to
each other, forming a laminar flow. Indeed
this equation is the foundation for classical
fluid dynamics, the basis for many phenom-
ena in almost all branches of Science and
Technology, such as Aeronautical Engineer-
ing, Chemical Technology, Atmospheric Sci-
ences and Oceanography. [12]

8 Maxwells Equations of

Electrodynamics

James Clark Maxwell unified Electricity
and Magnetism and summarised the un-
derlying laws governing Electrodynamics.
Maxwell’s equations[13] are a set of four
equations that form the theoretical basis
for describing classical electromagnetism.
Electromagnetic interactions govern most of
Physics and all of Chemistry and biology.
The Lorentz law, where q and v are respec-
tively the electric charge and velocity of a
test particle, defines the electric field E and
magnetic field B by specifying the total elec-
tromagnetic force F as

F = q[E + v× B].

• Gauss’s law: Electric charges produce an
electric field.
• There are no magnetic monopoles, which
could be magnetic analogue of electric
charges.
• Ampere’s Law: Steady electric current is
the source of Magnetic fields.
• Faraday’s law: Time-varying magnetic
fields produce an electric field and hence an
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Figure 10: James Clerk Maxwell

electric current.
These four laws constitute Maxwell Equa-
tions that govern Classical Electrodynamics

Gauss Law:

∇ · E =
ρ

ε0
,

∮
sur f ace

E · ds =
1
ε0

∫
volume

ρdV

are the differential and integral forms.
The surface integral is over a closed
surface s enclosing the volume V with
charge distribution ρ.

No Monopole:⇒

∇ · B = 0,∮
sur f ace

B · ds = 0

Ampere’s Law:

∇× B = µ0j + µ0ε0
∂E
∂t

,

∮
loop

B · dl = µ0

∫
s

j · da + µ0ε0
d
dt

∫
s

E · da

are the differential and integral forms. In
the latter the integration over a closed
loop l that encloses the flux of electric
field across the surface a.

Faraday’s Law:

∇× E = −∂B
∂t

,

∮
loop

E · dl = −ε0
d
dt

∫
s

B · da

are analogous differential and integral
forms. The induced EMF over the closed
loop l is the negative rate of change of
magnetic flux across the surface a en-
closed by the loop.

The charge density ρ(t, x) and current
density j(t, x) obey continuity constraint on
account of conservation of electric charge:

∂ρ

∂t
+∇ · j = 0,

Q ≡
∫

volume
ρdV = −

∮
sur f ace

j · ds.

The laws of electrodynamics are suc-
cinct expression behind the technology de-
veloped in the 20th century. It enables us
to use energy in the most convenient form.
The preceding century relied on heat as pri-
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mary source of energy and mechanical en-
ergy it can generate through steam turbines
as a means to turn the wheels of technology.
We now proceed further and, thanks to Fara-
day, have the turbines work electrical gener-
ators to produce electrical energy, indeed a
more convenient form to transmit. Same law
is responsible for it to run an electric motor
to result in myriad technical applications.

We may further note that if in a charge
free region E = E(x)k̂ and B = B(x)ĵ, both
fields are functions of only x variable, then
Maxwell’s Equations implies:

∂E
∂x

= −∂B
∂t

and
∂B
∂x

= − 1
c2

∂E
∂t

where we have used c = 1√
µ0ε0

. Taking par-
tial derivative of the first equation with re-
spect to x, the second with respect to t and
equating the pair we can conclude that

∂2E
∂x2 =

1
c2

∂2E
∂t2

Similarly we can derive

∂2B
∂x2 =

1
c2

∂2B
∂t2

The orthogonally oriented E and B obey one
dimensional wave equation representing an
electromagnetic wave propagating along x
direction. Indeed, Maxwell was the first to
provide a theoretical explanation for Light
to be a classical electromagnetic wave and,
in doing so, compute the speed of light c
in terms of known constants: magnetic and
electric permittivity µ0 and ε0.

Thus Electricity, Magnetism and Optics get
fully integrated.

Figure 11: Electromagnetic wave

9 Boltzmann and Entropy

The iconic equation

S = kB ln W

kB = 1.380649× 10−23 J/K

referred as Boltzmann constant

is an absolute Gem; engraved as an epitaph
on the grave of Ludwig Boltzmann. Newto-
nian mechanics deals with the dynamics of a
few bodies. However in reality we deal with
system made up of large number of bod-
ies. How do these laws translate? We define
macro-variables such as Volume V, Pressure
P, Temperature T, Internal Energy E etc.
One enigmatic variable is Entropy S, which
is sometime defined through δS = δQ

T . It
is related to the probable distribution of the
micro-states, the system corresponds to. It
is referred as the quantitative measure of an
inherent disorder when there is a large collec-
tion of bodies.

For an isolated system, say gas in a
chamber of Volume V at some Pressure P
and Temperature T. we can associate its heat
content as Q or equivalently its internal En-
ergy E and its Entropy as S. How does one
measure Entropy? How will S change as the
volume of the system is doubled? Model
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the gas as a collection of N identical dis-
tinguishable objects (gas of molecules) dis-
tributed in the two halves of a chamber, N1

in chamber 1 and N2 in chamber 2 and a bar-
rier separating the two. Number of micro-
states or distinct configurations is given by
W = N!

N1!N2! , with N = N1 + N2. Initially
when the gas is contained in chamber 1 and
chamber 2 empty, Win = N!

N!0! = 1, imply-
ing Sin = kB ln Win = 0. On removing the
barrier the N objects gets divided into most
probable distribution with N1 = N2 = N/2
in each half. The number of distinct dis-
tributions finally is given by the expression
W f = N!

(N/2)!(N/2)! . Using Stirling Formula
ln N! ∼ N ln N − N for large N, we can ex-
press:

S f = kB

[
ln N!− 2 ln

N
2

!
]

= kB

[
N ln N − N − 2

N
2

ln
N
2
+ 2

N
2

]
= kBN ln 2.

∆S = S f − Sin = kBN ln 2

We may now use an alternate way
to compute the change in Entropy for the
(ideal) gas, expanding isothermally to dou-
ble its volume, using what we learnt in high
school. Recall the First law of Thermody-
namics

dQ ≡ TdS = dE + PdV = dE + RT
dV
V

.

It is seen that (since for an isothermal expan-
sion there is no change in E) this leads to

∆S ∼ R ln
Vf

Vin
= kBN ln 2

when we identify gas constant R = kBN.
Classical Physics starts from Galileo,

Newton and Maxwell and needs Boltz-
mann’s statistical processes to reach the pin-
nacle. Kinetic Theory of Heat links the
macroscopic state of an ideal gas (no inter-
action) with the associated micro-states that
makes up the macro-state. Heat energy is
absorbed by a system at source temperature
T, works an ideal Carnot’s engine and dis-
cards unspent energy to a sink at T′ < T. Ef-
ficiency of the Engine is derived to be T−T′

T ,
always less than unity. All realistic engines
have lesser efficiency than the ideal Carnot
engine. With this perspective, we may give
an alternate understanding of Entropy as
the realisable content of the Energy of the sys-
tem.

The collection of objects can have a
range of energy values, discrete as well as
continuous; what is the relative probability
that an object has energy E? Boltzmann fac-
tor e−βE is the ’Occupancy rate’ for a classi-
cal particle where β = 1/kBT. If the den-
sity of energy levels is ρ(E), the Maxwell
- Boltzmann distribution, when the system
has reached a thermal equilibrium, is given
by

W(E) = η(E)ρ(E) η(E) = e−βE.

For an ideal gas of particles of (molecular)
mass m with E = 1

2 mv2 and ρ = 4πv2dv we
have a Maxwellian velocity distribution

W ∝ v2e−
mv2

2kBT .

Quantum mechanics adds a variation to the
occupancy rate η. Identical particles are, in
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Figure 12: Ludwig Boltzmann - Epitaph

principle, not distinguishable, since the no-
tion of trajectory of a particle is no longer
possible. In effect this causes a quantum me-
chanical repulsion among identical fermions
(such as electrons, protons etc., when Pauli’s
exclusion principle is operative) and a ten-
dency of attraction for bosons (such as pho-
tons, Helium nuclei etc., capable to form
Bose condensates) and is expressed by the
formula

η =
1

eβE + α
,

α assumes a value +1 for fermions, -1 for
bosons and 0 for a classical particle.

The concept of information entropy
was picked up by Claude Shannon in his
1948 paper “A Mathematical Theory of
Communication”[15], where he uses En-
tropy as a measure of the unpredictability of
the state, or equivalently, of its average in-
formation content and a parallel formula

H = −
n

∑
i=1

P(xi) log2 P(xi).

where H is Information Entropy and P(xi)

denotes the probability measure of a ran-

dom variable shows up. Information en-
tropy is the average rate at which informa-
tion is produced by a stochastic source of
data.

10 Einstein Relativity

At the beginning of the 20th century we wit-
ness two revolutionary changes in our phys-
ical perception - Theory of Relativity and
Quantum Mechanics. In the first, Newto-
nian concept of absolute space and absolute
time needed to be given up. In its place
Einstein, treating the concepts of Space and
Time as inter-dependent and measurements
by all observers as being relative, made two
postulates[14]:

1. Physics appears the same in all in-
ertial frames of reference (All observers in
relative uniform motion constitute inertial
frames for reference)

2. Velocity of light c, as observed in any
inertial frame is the same, numerically about
3× 108 m/s.

This summarises Principle of Special
Relativity.

Two frames of references, with Carte-
sian co-ordinates labelled as (x, y, z, t) in
frame S and (x′, y′, z′, t′) in frame S′ with
S′ moving relative to frame S with velocity
v along direction of unit vector î along
x-axis are related by Lorentz transformation
equations:
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Figure 13: Albert Einstein-1921

x′ =
x− vt√

1− v2/c2

y′ = y z′ = z

ct′ =
ct− vx/c√
1− v2/c2

There are many profound conse-
quences: Space and Time get interlinked;
moving observer will find the lengths con-
tracted by a factor γ = 1√

1−v2/c2 and time

dilated by 1
γ =

√
1− v2/c2. Simultaneity is

not preserved by Lorentz transformation.
Events that are simultaneous in one frame
need not be so in the other. What was
identified as inertial mass by Newton needs
a revisit, since Energy, Momentum are
now frame dependant conserved quantities
and mass is a derived quantity. The term
mass gets identified with an entity that is
invariant in all inertial frames of reference,
related by relevant Lorentz transformation.
Key equation for a system is

E2 = p2c2 + m2
0c4.

m0 is known as the invariant mass. When it
is at rest, momentum p = 0 and the energy
content of a mass at rest is m0c2. Both energy
and momentum increase as the particle is set
in motion. For small velocities |v| � c, the
momentum increases linearly p = m0v. For
larger velocities, it grows as p = m0v√

1−v2/c2 .
Substituting for p we get

E2 =
m2

0v2c2

(1− v2/c2)
+m2

0c4 =

(
m0c2

√
1− v2/c2

)2

⇒ E = mc2, with m =
m0√

1− v2/c2
.

We thus arrive at the iconic expression

E = mc2

declaring the equivalence of mass as its en-
ergy content.

Just as formulated by Newton, mass or
equivalently Energy, is the source of Grav-
ity. However, the General Theory of Relativ-
ity (proposed by Albert Einstein in 1915[16])
which describes gravity not as a force, but
as a consequence of the curvature of space-
time caused by the distribution of mass.
A flat space - time co-ordinates are given
by a set of Cartesian co-ordinates xµ; µ =

0, 1, 2, 3 and the distance interval between
two neighbouring points differing by dxµ is
given by an invariant

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

More generally for a general curvilinear co-
ordinates we may define a second rank sym-
metric tensor gµν(x0 = ct, xi; i = 1, 2, 3) as

35/4/1 14 www.physedu.in



Physics Education October - December 2019

metric tensor, which has the information of
the curvature in its functional dependence.
Indeed the derivative of a scalar field S(xµ):
Vλ(x) = ∂S

∂xλ is a Vector field. However the
derivative of Vector field is not a tensor field.
We need to account for the curvature and
parallel transport of the vector displacement
needs another factor, namely affine connec-
tion:

Tµ
λ (x) =

∂Vµ(x)
∂xλ

+ Γµ
λσ(x)Vσ(x)

Christoffel symbol Γµ
λσ can be expressed in

terms of the metric tensor:

Γµ
λσ =

1
2

gµν

(
∂gνσ

∂xλ
+

∂gλν

∂xσ
− ∂gλσ

∂xν

)
The curvature is characterised by the non-
zero value for the elements of a fourth rank
Riemann Christoffel Tensor written as

Rµ
αβγ =

(
∂Γµ

αγ

∂xβ
−

∂Γµ
αβ

∂xγ
+ Γµ

σβΓσ
γα − Γµ

σγΓσ
γβ

)

Define the related Ricci tensor Rµν and Ricci
Scalar curvature by contracting the curva-
ture tensor to get:

Rµν = Rσ
µσν, R = gµνRµν.

We arrive at the celebrated Einstein equa-
tion of Gravitation

Gµν ≡ Rµν −
1
2

gµνR =
8πGN

c4 Tµν

where Gµν is known as Einstein tensor, GN is
Newton’s Gravitational constant and Tµν as

the Energy Momentum tensor. The left hand
side of the equation describes the geome-
try of space-time that results from its source
of Energy-Momentum distribution that is on
the right hand side.

11 Schrödinger Equation

Classical Mechanics relied on Newton’s
equation that asserted that once we know
the initial position and initial momen-
tum/velocity of the system and the force
it is subjected to, we can trace its trajec-
tory. Quantum uncertainty principle, that
constraints our simultaneous knowledge of
the both: ∆x∆p ≥ h̄/2, renders the notion
of trajectory fuzzy and puts an end to the
determinacy, that was the norm for solu-
tions to dynamics of the classical era. The
paradigm shift of probabilistic nature of dy-
namics turns all observables into linear op-
erators in a Hilbert space that describes the
state of the system, represented through a
complex valued wavefunction Ψ. The oper-
ator associated with the momentum is p =
h̄
i

∂
∂x [In 3 d space it takes the form p = h̄

i∇]
and similarly Energy E = h̄

i
∂
∂t . Indeed to-

tal Energy is made up of Kinetic Energy
(p2/2m) and Potential Energy (V(x)) and so

we may treat E = p2

2m + V(x) as an opera-
tor equation. Ernest Schrödinger, thus de-
rived the equation[17] for the wave-function
Ψ(x, t), a complex valued function in the
configuration space of the system (here the
position of the particle x at an instant t):
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Figure 14: Erwin Schrödinger 1933

h̄
i

∂Ψ
∂t

= −h̄2∇2Ψ + V(x)Ψ;

Ψ(x, t)∗Ψ(x, t) is the probabilistic density is
normalised so that

∫
d3x|Ψ|2 = 1.

Non-relativistic Quantum Mechanics
makes a smooth transition from the classical
dynamics to the quantum analogues. The
wave functions for Hydrogen atom and for
Harmonic Oscillator could be solved exactly
by the relevant Schrödinger Equations. We
find many features in Atomic and molecu-
lar Physics, condensed matter Physics, Op-
tics well explained by non relativistic Quan-
tum Mechanics. When the equations are not
exactly solvable, we are able to get approx-
imate solutions to the desired level of pre-
cision by using perturbation and variational
techniques.

12 Dirac Equation

The final beautiful equation we list is the fa-
mous Dirac Equation for electron[18]. In-
deed it is the correct equation of all spin
1/2 particle, such as protons, neutrons, all

Figure 15: P A M Dirac

quarks and leptons (e, µ, τ) etc. that form
the basis for all matter. Amusingly it was
referred to as the equation that which de-
scribes most of physics and ALL of Chem-
istry and Biology. That is a bit of hyperbole -
but it does emphasise the special role played
by the valence electrons (that are relatively
free in atoms and molecules0 in shaping the
interactions that are aspects of the structure
and dynamics in Physics and Chemistry.
The interesting feature is that it represents
free electron with arbitrary energy, spread-
ing to its relativistic domain as well. Dra-
matically, it necessitated and predicted the
existence of positron the conjugate antiparti-
cle of electron before its discovery in the lab-
oratory. In the non-relativistic Schrödinger
wave-functions are represented by a com-
plex valued square integrable wave func-
tion, say φ(x, t), the electron is represented
by a (4 - component) ‘Spinors’ ψα(xµ); µ =

0, 1, 2, 3 the space-time indices, α = 1, 2, 3, 4
are the indices giving the row number of a
coloumn matrix. An electron state may be
labelled with its Momentum, Energy and its
two fold Spin state. We will give the orig-
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inal version Dirac proposed and evolve to
presently used form.

We start with the set of three 2× 2 Pauli
matrices σi:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0
0 −1

)
and note that the components of the spin

angular momentum Si = h̄σi/2 satisfies
the algebra of angular momentum [Si, Sj] =

ih̄εijkSk, where εijk is the Levi-Civita symbol
non zero only when i 6= j 6= k and is +1 for
i, j, k = 1, 2, 3; = 2, 3, 1 and = 3, 1, 2 and is
-1 otherwise. Define a set of mutually anti-
commuting 4× 4 hermitian matrices β, αi as

β =

(
I 0
0 −I

)
αi =

(
0 σi

σi 0

)

i = 1,2,3 and with I =

(
1 0
0 1

)
.

The matrices are mutually anti-commuting
and their squares are I4, identity matrix in
4 dimension. [{β, αi} = 0, β2 = I4 and
{αi, αj} = 2δij I4 ]. The Dirac equation in the
form originally proposed by Dirac is:(

βmc2 + c
h̄
i
~α · ~∇

)
ψ(x, t) = − h̄

i
∂ψ(x, t)

∂t

where ψ is a 4-component spinor represent-
ing a free electron of mass m. The spin state
of the electron is encoded in the spinor wave
function.

The covariant form of Dirac equation is
obtained with following identification: with

space-time co-ordinates xµ, define γ0 = β

and γi = βαi to provide us with four Dirac
matrices γµ, µ = 0, 1, 2, 3 that satisfy the
anti-commutation relations:

{γµ, γν} = 2ηµν I4,

The metric ηµν is of the form:

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Dirac Equation assumes in compact covari-
ant form:

ih̄γµ ∂ψ

∂xµ = mcψ

We may also write it as (γµ pµ − mc)ψ = 0,
where pµ is the four-momentum operator,
further abbreviated as (/p −mc)ψ = 0 using
the shorthand notation for γµ pµ as /p.

13 Epilogue

Indeed, the choice of Equations for ‘Beauti-
ful Dozen’ is subjective. You may make a
different set. A discerning reader may no-
tice that I really have a couple more than
a dozen by squeezing in one section both
creations of Newton on one hand and got
Wave Equation and Heat Equation together
in another section, notwithstanding a tower
of phenomena that are linked with each.
Similarly both revolutions of Einstein are
grouped under Relativity. You may prefer
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more modern (more contemporary) gems,
such as Yang Mills Equation that uncov-
ers the ‘gauge principle’ as unifying ALL
fundamental forces (save gravity) and/or
London- Anderson- Englert- Brout- HIGGS-
Guralnik- Hagen- Kibble- Weinberg mecha-
nism that brings out the subtle principle of
hidden symmetry as a beautiful dynamical
concept, relevant in many different areas. I
could draw a line at the turn of the last mil-
lennium, but that will deprive us of the last
two or even three entries. I may have missed
many!
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Abstract

A large number of exactly solvable quantum me-

chanical potential problems are formed using a

technique called Darboux transformations(DT).

The similarity between the eigen value spectra

of the new and original Hamiltonian is shown.

We generated exactly solvable potentials from

harmonic oscillator potential and Coulomb

potential and for the latter we developed a

modified DT to get new potential problems.

1 Introduction

Solving the Schrodinger equation exactly
for different potentials is one of the fun-
damental problems of quantum mechanics,

some of which are studied at the under-
graduate level. The intent of this paper is
to present new potentials other than har-
monic oscillator potential, Coulomb poten-
tial etc., for which the Schrodinger equation
has exact solutions. The Darboux transfor-
mations(DT) is a classical method for gen-
erating new solutions from given solutions.
Here by means of DT, we enlarge the class of
potentials for which the Schrodinger equa-
tion can be exactly solved.

We know that one can construct new ex-
actly solvable potentials of one dimensional
Schrodinger equation using a method that
is derived from the inverse scattering prob-
lems(based on Gelfand-Levitan equation)
and represents an integral transformation
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of the solutions of the initial Schrodinger
equation[1, 2, 3, 4]. Here we propose an-
other method, which is to use a differential
transformation suggested by a French math-
ematician, Gaston Darboux, a century ago.

The fundamental results of Darboux re-
mained unrecognized for a long time. In
1979, Matveev applied Darboux’s theorem
to a large class of linear partial differential
equations as well as differential-difference
and difference-difference linear evolution
equations [5]. DT also became popular in the
study of nonlinear partial differential equa-
tions [6]. In fact there is some connection be-
tween the two ways of constructing new ex-
actly solvable models. This has been studied
by Schnizer and Leeb and Samsanov in their
papers [7, 8, 9]. Mielnik pointed out the
use of a factorization method to construct
new Hamiltonians with eigen value spec-
trum coinciding with original Hamiltonian
[10]. This method is however a special case
of DT [6, 11]. Some authors proposed a con-
nection between DT and super-symmetric
quantum mechanics [12, 13, 14, 15]. We are
proposing how DT can be effectively used
to generate potentials which have exact so-
lutions other than known ones.

The plan of the paper is as follows. In
section 2, we present a brief discussion of DT
and show that it leads to new exactly solv-
able potentials for the Schrodinger equation.
Sections 3 and 4 deal with two potential
problems which are used for generating new
solvable models. Section 4 also presents the
modification needed for DT in order to ap-

ply it to the radial problem. Section 5 con-
tains the conclusions.

2 Darboux Transformations

To introduce the technique of DT, consider
one dimensional Schrodinger equation in
the form

− ∂2Ψ(x)
∂x2 + v(x)Ψ(x) = λΨ(x) (1)

where v = 2mV
h̄2 and λ = 2mE

h̄2

Suppose Eq. (1) is exactly solved for a given
potential and we know all of its eigen func-
tions and eigen values for the potential v(x).
Let Ψ1(x, λ1) be a solution of Eq. (1). Its log-
arithmic derivative is defined as

σ =
1

Ψ1

∂Ψ1

∂x
(2)

Now a DT permits one to obtain the general
solution of another Schrodinger equation

− ∂2Φ(x)
∂x2 + u(x)Φ(x) = λΦ(x) (3)

under the DT,

Φ(x) = [
d

dx
− σ]Ψ(x) (4)

u(x) = v(x)− 2
∂σ

∂x
(5)

where Ψ is any arbitrary solution of Eq. (1).
We can state Darboux’s theorem in the

following way: the Schrodinger equation,
Eq. (1) is covariant with respect to the action
of the DT, Ψ(x) → Φ(x) and v(x) → u(x).
Thus Eqs. (1) and (3) are exactly solvable
Schrodinger equations for two different po-
tentials v(x) and u(x) respectively, having
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exactly the same eigen values. But it is ob-
vious that for Eq. (3), the eigen value spec-
trum exactly coincides with that of Eq. (1)
except for the state Ψ1. The examples treated
in the following sections show that the co-
incidence between the eigen values of u(x)
and v(x) is only partial.

3 New exactly solvable models

from the H.O. potential

We know that Schrodinger equation gives
exact solutions for the H.O. potential,
V(x) = 1

2 kx2 = 1
2 mω2x2 where k is the force

constant and ω is the angular frequency of
the particle of mass m. The equation for

H.O. is

− ∂2Ψ(x)
∂x2 + [

m2ω2x2

h̄2 ]Ψ(x) =
2mE

h̄2 Ψ(x)

(6)
where E satisfies (n + 1

2)h̄ω, (n = 0, 1, 2, ....)
for the harmonic oscillator potential. Let us
now show that DT leads new exactly solv-
able Schrodinger equation from Eq. (6). The
new equation is,

− ∂2Φ(x)
∂x2 + u(x)Φ(x) = λΦ(x) (7)

where u(x) and Φ(x) are defined by DT (4)
and (5).
To define logarithmic derivative we choose,
first excited state (n = 1) wave function [16]
of Eq. (6)

Ψ1(x, λ =
3mω

h̄
) = [

mω

πh̄
]

1
4

√
2mω

h̄
x exp (−mωx2

2h̄
) (8)

Therefore,

σ =
1

Ψ1

∂Ψ1

∂x
=

1
x
− mωx

h̄
(9)

It immediately follows from DT that,

u(x) =
m2ω2x2

h̄2 +
2mω

h̄
+

2
x2 (10)

This is an anharmonic potential and DT
gives exact solutions to this potential, pro-
vided various Ψ(x) of Eq. (6) are given.
Now we will define Φ(x), using Eq. (4) and
Ψ(x) is arbitrarily chosen from Eq. (6).
Let us choose Ψ(x) as the ground state (n =

0) wave function of the harmonic oscillator

potential,

Ψ(x) = [
mω

πh̄
]

1
4 exp (−mωx2

2h̄
) (11)

Hence,

Φ(x) = −[mω

πh̄
]

1
4

1
x

exp (−mωx2

2h̄
) (12)

This represents an exact solution of Eq. (7)
and corresponding eigen value is λ = mω

h̄ .
To check the admissibility condition on
the new wave function, we use the nor-
malization condition of the wave function,∫ ∞
−∞ Φ∗Φdx = N. It is seen that The new

wave function Φ(x) is non-normalizable
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because of the essential singularity of this
wave function at x = 0. This suggests that
eventhough Eq. (7) is exactly solved, the
new wave function Φ(x) is quantum me-
chanically unacceptable. This rules out the
existence of the corresponding eigen state

(λ = mω
h̄ ) from the new exactly solvable

potential Eq. (10). A similar fate befalls
other even order eigen states (n = 2, 4, 6, ...)
as well.

Now let us choose Ψ(x) corresponding
to third excited state (n = 3),

Ψ(x) = [
mω

πh̄
]

1
4

√
3mω

h̄
[x− 2mωx2

3h̄
] exp (−mωx2

2h̄
) (13)

which yields

Φ(x) = [
mω

πh̄
]

1
4

√
3mω

h̄
[−4mωx2

3h̄
] exp (−mωx2

2h̄
) (14)

This Φ(x) is normalizable. The corre-
sponding eigen value (λ) can be obtained
from Eq. (7) on substitution of Φ(x)
and u(x) into that equation, which gives
λ = 7mω

h̄ . Similarly it can be shown that if
Ψ(x) chosen to be any solution of Eq. (6)
corresponding to n = 3, 5, 7, ..., the new
solutions Φ(x) are normalizable.

Thus the initial Schrodinger equation
(6) for the H.O. potential leads to a new
exactly solvable equation (7) for an anhar-
monic potential u(x) given by Eq. (10).
When we assume solutions, Ψ(x) of initial
equation, we can solve Eq. (7) to give new
solutions Φ(x). Thus we have two exactly
solvable potentials instead of one. Even-
though the eigen value spectrum of u(x)
coincides with that of H.O. potential, only
those eigen states corresponding to n =

3, 5, 7, ... are quantum mechanically accept-

able. Thus the coincidence of eigenvalues is
only partial. In the above example we have
taken first excited state wave function of Eq.
(6) to form a new solvable potential u(x).
Similarly we can take any solution of Eq. (6)
to define the new exactly solvable potential.
This leads to a large class of exactly solvable
potentials for the Schrodinger equation. We
should mention one more point regarding
the above idea. We got a new exactly solv-
able equation (7) from (6) provided its wave
functions are known. Similarly we can form
another exactly solvable model from eq. (7),
when all of its solutions are known. This
procedure is called the iteration of DT. This
can be further extended. Thus starting from
a single Schrodinger equation exactly solv-
able potential, we can generate a wide class
of exactly solvable potentials by DT.
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4 Coulomb potential (Hydrogen

atom)

For a two particle central potential problem,
the general solution of Schrodinger equation
[17] has a radial and an angular part such as
Ψ(r, θ, φ) = Rnl(r)Ylm(θ, φ). The radial part
R(r) satisfies radial wave equation,

− d2R
dr2 −

2
r

dR(r)
dr

+ vR(r) = λR(r) (15)

where v = 2µV(r)
h̄2 + l(l+1)

r2 and λ = 2µE
h̄2 ; µ

is the reduced mass of the two particle sys-
tem and l(l+1)

r2 is the centrifugal potential.
For Hydrogen atom, Coulomb potential(in
cgs system of units) is V(r) = −Ze2

r and

En = −µZ2e4

2h̄2n2 , n = 1, 2, 3, ...(Z is the atomic
number). If we use the expression for the
classical Bohr radius of the atom a = h̄2

µe2 ,
then

v(r) = −2Z
ar

+
l(l + 1)

r2 (16)

and

λ = − Z2

a2n2 (17)

4.1 Modification for Darboux

transformation

In order to apply DT to Eq. (15), the usual
transformation in the case of Schrodinger

equation needs a slight modification. Dar-
boux transformed exactly solvable radial
equation can be written as,

− d2χ(r)
dr2 − 2

r
dχ(r)

dr
+ u(r)χ(r) = λχ(r)

(18)
where

χ(r) = [
d
dr
− σ]R(r) (19)

by the Darboux transformation. Where the
logarithmic derivative σ is defined as

σ =
1

R1

dR1(r)
dr

(20)

R1(r) is a particular solution of Eq. (15) for
λ = λ1. R(r) is arbitrarily chosen from the
solution set of Eq. (15). (R(r) can be any
radial wave function of Eq. (15) except that
used to define logarithmic derivative).

It can be seen that radial wave equa-
tion is covariant under the transformations
R(r)→ χ(r) and v(r)→ u(r) only if

u(r) = v(r)− 2
dσ

dr
+

2
r2 (21)

To arrive at this, substitute χ(r) from Eq.
(19) into Eq. (18) and making use of Eq. (15)
we get,

[u(r)− v(r) + 2
dσ

dr
− 2

r2 ]
dR(r)

dr
+ [−dv(r)

dr
+

d2σ

dr2 + σv(r) +
2
r

dσ

dr
− σu(r)]R(r) = 0 (22)
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This equation is meaningful only if the
coefficients of dR

dr and R are identically zero,
which yields the Darboux transformed po-
tential as,

u(r) = v(r)− 2
dσ

dr
+

2
r2 (23)

Thus Eq. (17) gives a new exactly solvable
radial wave equation for a potential u(r) un-
der the transformations Eqs. (19) and (21).
If the l values in the definition of the log-
arithmic derivative and in the expression
for v(r) are different, the potential transfor-
mation becomes inadmissible, because any
intermediate modification to the potential
other than that suggested by Eq. (21) does
not come under the purview of Darboux
theorem. This means that we cannot ap-
ply DT to an s-state wave function (l = 0)
using the logarithmic derivative defined by
another p-state wave function (l = 1) and

vice versa.

4.2 New exactly solvable models using

Coulomb potential

suppose initial radial equation (15) is ex-
actly solved for Hydrogen atom and assume
that its solutions [17] are known. Using this
reference system we can construct a large
number of radial equations exactly solvable
potentials by using Eq. (21). Thus Eq. (18)
above is an exactly solvable one and substi-
tuting for u(r) and χ(r) in this equation, we
can also find the value of λ. u(r) and v(r)
have got identical eigen value spectra.

To define the logarithmic derivative, we
choose 1s wave function (l = 0, n = 1) of
hydrogen atom, which is a solution of Eq.
(15) ie.,

Rnl(r, λ1) = R1s(r, λ1) = R1s(r,−Z2

a2 ) = 2(
Z
a
)

3
2 exp (−Zr

a
) (24)

where a is Bohr radius of the atom.
Since l = 0, v(r) = −2Z

ar

σ =
1

R1s

dR1s

dr
= −Z

a
(25)

u(r) = −2Z
ar

+
2
r2 (26)

Thus DT provides a new exactly solvable ra-
dial equation Eq. (18) for a new potential
Eq. (26). This can be exactly solved knowing
various radial functions of Eq. (15). The so-
lutions χ(r) of new radial equation are given

by DT Eq. (19). Let us arbitrarily choose
R(r) as 2s wave function (n = 2, l = 0) of
hydrogen atom radial equation,

R(r) =
1√
2
(

Z
a
)

3
2 (1− Zr

2a
) exp (−Zr

2a
) (27)

It immediately follows that

χ(r) = − 1
4
√

2
(

Z
a
)

3
2

Z2r
a2 exp (−Zr

2a
) (28)

From the new radial equation Eq. (18), we
will get the corresponding eigen value λ =
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− Z2

a222 . It is clear from Eq. (17) that this eigen
value coincides with that of hydrogen atom
radial equation. Other solutions of Eq. (18)
can be obtained in a similar way, by using
R(r) as 3s, 4s... wave functions of hydrogen
atom.

Thus a wide class of radial equations
with exactly solvable potentials can be de-
duced from hydrogen atom radial equation.
In some cases the eigen values of the new
and old potentials exactly coincide and in
some other cases the coincidence is only par-
tial.

5 Conclusions

We attempted to formulate a large class of
one dimensional exactly solvable potentials
for the Schrodinger equation by applying
Darboux transformations. By applying
DT to a reference problem, the class of
potentials for which Schrodinger equation
can be exactly solved can be enlarged. We
can summarise the results as follows:
1. DT can be effectively used to construct an
infinite number of exactly solvable systems
from a known system.
2. Not all systems obtained by the Dar-
boux procedure are quantum mechanically
admissible, but a large number of valid
systems can be generated.
3. Darboux transformed Hamiltonian share
the eigen value spectrum of the original
Hamiltonian only partially.
4. Physical systems representing new solv-
able potentials to be studied further.
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Abstract

The boundary effects are integral to any kind

of wave motion whenever travelling waves

encounter an obstacle or a change in the

medium of propagation. They are known to

be responsible for some of the well known

phenomena like echoes, radar detection or

sound production in musical instruments. In

this work simulation of the boundary behaviour

of transverse waves along a string is done. The

effects arising due to rigid boundary conditions,

free boundary conditions, real (neither free

nor rigid) boundary conditions and impedance

discontinuity (change in medium) conditions

have been discussed.These simulations can be

used as visual aids or tool kits to make the

traditional methods of teaching and learning of

the underlying physics concepts more effective.

SCILAB, an open source computational soft-

ware has been used for numerical calculation,

simulation and animation as needed. The target

group of the present work are the students and

teachers of the introductory undergraduate level

Physics.

1 Introduction

The pedagogical merits of making com-
puter programming and modelling an in-
tegral part of physics education has been
recognized long back [1]. By integrat-
ing computational physics techniques with
the traditional teaching-learning methods of
physics, a major improvement in the con-
ceptual understanding and problem solving
skills of students can be expected [1,2,3].It
it is needed to introduce programming and
numerical techniques early in the course of
physics education.

To begin with, the students can be made
to solve problems using both analytical as
well as computational techniques. These
problems can be picked from anywhere in
the curriculum of the physics course being
pursued by them. The next step can be
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to generalise these problems in such a way
that solving them analytically becomes ei-
ther very tedious or almost impossible and
the only option left with students is to adopt
a computational approach. Consequently,
they would be able to understand the limi-
tations of analytical methods and appreciate
the importance of computational methods.
Such an insight would motivate the students
to probe deeper into the physics concepts
being taught to them and train them to solve
more realistic and research oriented prob-
lems. The adoption of this kind of teaching-
learning approach could go a long way in
inspiring the students to choose a future in
physics.

In this work it is attempted to illus-
trate how one can use a numerical approach
for a better visualization and understand-
ing of the boundary behaviour of transverse
waves in strings as compared to a purely an-
alytical treatment of the phenomena that is
mostly found in textbooks. A simulation is
done of how the propagation of transverse
waves along a string would be affected by
the conditions that exist at is two ends.

The paper begins with a discussion on
modelling of the physical phenomenon of
wave propagation along a string and the
computational approach used in develop-
ing the relevant computer codes. Subse-
quently, the reflection of transverse waves
at rigid and free boundaries of the string
are discussed. In real strings such as those
found on musical instruments, the waves
encounter boundaries that are neither per-

fectly rigid nor perfectly free. The interac-
tion of waves with such ’real’ boundaries
form the next part of the discussion. It is
followed by a discussion on the response
of transverse waves along a string to an
impedance discontinuity , i.e. , when the
waves see a change of medium .One of the
most important phenomenon arising due to
boundary conditions in strings, the forma-
tion of stationary waves is simulated in the
last section of the paper. The simulation
is done using SCILAB, an open source nu-
merical computational package. Program-
ming in SCILAB is much easier and concise
in comparison to other high level languages
like FORTRAN, C or C++ used in scien-
tific computing.The simplicity of program-
ming in SCILAB is attributed to its matrix
based computation, dynamic typing and au-
tomatic memory management features. It
is the ease of using SCILAB even for peo-
ple without prior programming experience
that enable the computer codes developed
in this work to be used as tool kits for visu-
alization and an enhanced understanding of
transverse wave propagation on a string as
a bounded medium. Minor modifications in
the codes can be done quite easily to explore
those aspects of the phenomenon whose an-
alytical treatment can become challenging.

2 Modelling Transverse Wave

Propagation along a String

Wave propagation in a medium is attributed
to the cohesive forces binding the neigh-
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bouring particles of the medium and to the
elastic forces developed in the medium by
the moving disturbance. The mathematical
description of a wave is given by the classi-
cal wave equation, the one-dimensional ver-
sion of which can be written as

∂2u(x, t)
∂t2 = v2 ∂2u(x, t)

∂x2 , (1)

where the wave propagation takes place
along x-axis. u(x,t) is the instantaneous dis-
placement of the medium particle located at
x and v is the velocity of wave propagation
or the wave velocity. Equation (1) is a linear
partial differential equation.

Whatever the waves, the wave veloc-
ity can always be expressed as a function
of “elasticity” or potential energy storing
mechanism in the medium and the “iner-
tia” of the medium through which its kinetic
energy is stored. When a continuous string
stretching from x=0 to infinity offers itself as
the medium of wave propagation, the wave
velocity is given by

v =

√
T
m

, (2)

where T is the tension in the string and m is
its linear density , i.e. mass per unit length
of the string. If the string is homogeneous,
then both T and m are constants in space and
time. It can be easily shown that any func-
tion of the form

u(x, t) = f1(vt− x), (3)

or u(x, t) = f2(vt + x) (4)

will be a solution of the wave Eq. (1).
Equation (3) represents a wave travelling

along the positive x-axis, while Eq. (4) is for
a wave moving in the negative x-direction.
Further, since Eq. (1) is linear, the principle
of superposition holds good for all its so-
lutions. Thus, the complete solution of the
classical wave equation can be written as,

u(x, t) = f1(vt− x) + f2(vt + x). (5)

The one-dimensional propagation of
waves along the string under different phys-
ical situations is modelled by the wave Eq.
(1) subject to appropriate boundary and ini-
tial conditions.

3 The Computational Approach

The Finite Difference Method has been used
to solve the given wave equation. In this
method the derivatives occurring in the
equation and in the boundary/initial condi-
tions are replaced by their finite difference
approximations, thereby, transforming the
differential equation to an equivalent differ-
ence equation.

To set up the difference equation, a
(N+2)×(M+2) dimensional rectangular grid
in space and time is chosen. The bound-
aries of the grid are decided by the range of
x and t variables over which the solution to
the problem is sought. If x ε [xo,x f ] and t ε

[to,t f ], then the grid points along the space
and time axes are given by

xi = xo +(i− 1)h, where i = 1, 2, . . . , N + 2
(6)

tj = to +(j− 1)l, where j = 1, 2, . . . , M+ 2
(7)
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such that xN+2 = x f and tM+2 = t f . The
lines x = xo, x = x f , t = to and t = t f

form the grid boundaries, h and l are the
step sizes for defining the grid points along

the x-axis and t-axis respectively. Using the
forward difference approximation, the finite
difference representation of the given one-
dimensional wave equation can be easily
shown to be

u(i, j + 1)− 2u(i, j) + u(i, j− 1)
l2 = v2

[
u(i + 1, j)− 2u(i, j) + u(i− 1, j)

h2

]
(8)

where, u(i,j) = u(xi, tj). Solving Eq. (8) for u(i,j+1), we get,

u(i, j + 1) =
l2v2

h2

[
u(i + 1, j) + u(i− 1, j)

]
+ 2
[

1− l2v2

h2

]
u(i, j)− u(i, j− 1). (9)

From Eq. (9) it can be seen that if u is
known at all xi at the times tj and tj−1 then
u at all xi at the next time step, tj+1, can be
determined. This is an explicit method for
determining the solution.

It is to be mentioned that the size of fi-
nite differences determine the accuracy of
a solution. If these differences are made
smaller the accuracy of the solution is ex-
pected to improve. However, the extent to
which the accuracy of a solution can be im-
proved needs to take into account its “sta-
bility”. The “stability” of a solution implies

its meaningfulness, i.e. the solution should
be physically significant. In the finite differ-
ence approximation of the given wave Eq.
(1), the condition for stability of its solution
can be shown to be

|vl
h
| ≤ 1 . (10)

Thus, to ensure solution stability the step
sizes h and l are chosen such that they sat-
isfy the condition

v2l2

h2 = 1 . (11)

Substituting Eq.(11) in Eq.(9), we get

u(i, j + 1) = u(i + 1, j) + u(i− 1, j)− u(i, j− 1) (12)

as the required recursion relation.

Now, since we have i = 1, 2, 3, ..., (N +
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2) and j = 1, 2, 3, ..., (M + 2), the solu-
tion of difference Eq.(12) is equivalent to
solving a system of algebraic linear equa-
tions. To solve the system of equations
in the present case, Gauss-Siedel method
has been chosen because of its iterative ap-
proach and faster convergence.The differ-
ence Eq.(12) along with appropriate bound-
ary conditions and initial values are thus
transformed into a suitable SCILAB code.

The algorithm used for writing the code
is:

An initial guess is made for u(i, j) at all inte-
rior points of the grid.

Equation (12) is used to compute um(i, j) at
all interior points. The index m is the itera-
tion number.

If the prescribed convergence threshold is
reached, iteration is stopped, else it is con-
tinued.

For the given iteration, the new value of u is
updated.

The control is transferred to step 2.
In the SCILAB code for Gauss-Siedel

method as seen in the screenshot in Fig.1, a
variable “done” is declared to be a logical
variable and is set to be TRUE (done=%t)
at the start of every iteration. As the iter-
ation proceeds, the accuracy of computed
F(i, j) [variable used in the code for u(i, j)] at
each grid point is tested. If the error exceeds
the specified accuracy or tolerance, the vari-
able “done” is set to FALSE (done=%f) and
the next iteration starts. A provision is also
made to exit the iterative WHILE LOOP if
the number of iterations become too large.

The screenshot in Fig.2 shows a portion
of the code used for animating the simula-
tions.These animations have also been con-
verted to .avi and .gif formats.There are 11
animations in all that depict the results of
the present work. These files have been ref-
erenced as Animation 1, Animation 2...Ani-
mation 11 at appropriate places through out
the text. The .gif format of these animations
can be accessed at the following link.

https://drive.google.com/drive/folders/1KDhGVYoCIPpy4eWLR5-k6Xwm5Zz1IX4w

These gif files have been created using
the open source Imagemagick software.

4 Rigid and Free Boundary

In our aim to aid the understanding of the
phenomenon of reflection of waves at rigid
and free boundaries we simulate the follow-

ing physical situation : A meter long string
having a mass of 1g is under a tension of
10 N with its one end rigidly fixed and the
other end left free. Initially the string is de-
formed so that it has a ”bump” in the mid-
dle and is motionless at time t=0. The subse-
quent motion of the string is to be observed.

The first step in simulation is to write
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Figure 1. Screenshot of SCILAB code for Gauss-Seidel method

Figure 2. Screenshot of SCILAB code uesd for animation
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the mathematical expression for the initial
“bump” function. Let us take the “bump”
to be having a Gaussian waveform centred
half way along the length of the string at x=
L/2 = 0.5 m. Thus, the required expression
can be written as,

u(x, t) =


0 , x = 0 ,

e−A (x−0.5)2
, 0 < x < L ,

0 , x ≥ L ,

(13)

where A is some constant and L is the length
of the string equal to 1 m in this case. Next,
Eq. (1) is solved using Eq. (13) as one
of the initial conditions. The other initial
condition is arrived at by the consideration
of the string being motionless at t=0. This
manifests itself in the time derivative of the
string’s transverse displacement to be zero
at t=0, i.e.,

∂u(x, t)
∂t

t = 0 = 0 . (14)

The discretization of the above initial condi-
tion is done by using central difference ap-
proximation as follows

∂u(xi, tj)

∂t
=

u(xi, tj+1)− u(xi, tj−1)

l
. (15)

For t=0, we have j=1 and therefore

∂u(xi, tj)

∂t
t = 0 =

u(i, 2)− u(i, 0)
l

. (16)

Substituting Eq. (14) in Eq. (16), we get

u(i, 2) = u(i, 0). (17)

Rewriting Eq. (12) for j = 1, we get

u(i, 2) = u(i + 1, 1) + u(i− 1, 1)− u(i, 0).
(18)

By eliminating u(i,0) between Eq.(17) and
Eq.(18), we can write

u(i, 2) =
u(i + 1, 1) + u(i− 1, 1)

2
. (19)

Equation (19) is used to compute transverse
displacement at various i values for j=2. For
j > 2, Eq.(12) computes the transverse dis-
placement at the remaining grid points.

The next step is to incorporate the
boundary conditions.A rigid boundary is
characterized by zero displacement at all
times while a free boundary always remains
unstrained. In the simulation, the ends x=0
and x=L of the string are taken to be free and
rigid boundaries respectively.As the wave
pulse approaches the rigidly fixed end at x =
L, i.e., u(L,t)=0, the internal restoring forces
which allow the wave pulse to propagate ex-
ert an upward force on this end of the string.
But since the end is rigidly fixed, it does not
move. According to Newton’s third law, the
string support at this end must be exerting
an equal downward force on the end of the
string. This force creates a wave pulse that
propagates from right to left, with the same
speed and amplitude as the incident pulse
but with opposite polarity. Now, for the
wave pulse moving leftwards towards the
free end at x = 0, the net vertical force at
this end of the string must be zero, i.e., we
should have

T
∂u(x, t)

∂x
x = 0 = 0 . (20)

This boundary condition is thus mathemat-
ically equivalent to requiring that the slope
of the string displacement be zero at the free

35/4/3 7 www.physedu.in



Physics Education October- December 2019

end. Hence, in our case

∂u(x, t)
∂x

x = 0 = 0 (21)

is the required boundary condition. The dis-
crete formulation of Eq.(21) using forward
difference approximation is

u(2, j)− u(1, j)
h

= 0 (22)

giving
u(1, j) = u(2, j) (23)

for all values of j corresponding to all in-
stants of time. The reflected wave pulse
propagates from left to right with the same
speed and amplitude as the incident wave
and also with the same polarity.

Animation 1 is the result of executing
the corresponding SCILAB code. The initial
waveform can be seen to dissociate into two
identical Gaussian pulses moving in oppo-
site directions towards the two ends of the
string.Physically, the observation can be ex-
plained on the basis of the law of conserva-
tion of linear momentum. Since the initial
momentum of the string is zero, the “bump”
would evolve with time in a manner that the
total momentum of the string remains zero
at all later instants. It can also be seen that
a crest is reflected as a trough at the rigid
boundary while it remains a crest after re-
flection at the free boundary.

Figure 3 depicts the instantaneous con-
figuration of the string as the two Gaussian
pulses propagate along the string and get re-
flected at it ends. The reflected pulses then
superimpose almost destroying each other

at t ' 0.01s. At t ' 0.02s, they exhibit
complete constructive interference yielding
a pulse of the same amplitude as the ini-
tial pulse but with opposite polarity. In
this simulation the values of the various pa-
rameters like the simulation time, tension
in the string, mass per unit length and the
length of the string can be easily changed
in the given SCILAB code. Such changes
can be used for further exploration of the
phenomenon, for example, if at all then
how do the instants of complete construc-
tive and destructive interference of pulses
get affected by any of these parameters. To
view the configuration of the string at in-
stants other than those shown in Fig.3, mod-
ifications can be made in the plotting part of
the code.By changing the values of tension
and/or mass per unit length the pulses can
be made to propagate at different speeds.

5 Real Boundary

In real strings such as those found on musi-
cal instruments, the supports lie somewhere
between being perfectly rigid and being per-
fectly free. Most stringed instruments pro-
duce sound through the application of en-
ergy to the strings either by striking, pluck-
ing or bowing them, which sets them into
vibratory motion creating musical sounds.
The strings alone however, produce only a
faint sound that needs to be amplified to
be heard. This is accomplished by a device
called “bridge” that essentially supports the
strings on a stringed musical instrument. It
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Instantaneous Configuration of the String at t=0.02s 

Figure 3. Reflection at Free Boundary at x = 0 and a Rigid Boundary at x = L : T = 10N, L = 1m,

m = 0.001Kgm−1. The free end gets displaced with the string and the rigid end remains fixed. String

Configuration at t = 0s, 0.002s, 0.0035s, 0.0055s, 0.0085s, 0.0095s, 0.01s, 0.0115s, 0.0135s, 0.015s, 0.016s,

0.017s, 0.018s, 0.019s & 0.02s. At t = 0.0085s, a crest remains a crest on reflection at x = 0 which is a

free boundary and a crest becomes a trough on reflection at x = L which is a rigid boundary.

transmits the vibration of those strings to
another structural component of the instru-
ment, typically a “sound board” that pro-
duces louder sounds. Thus, the bridge is
a kind of support that not only allows the
strings to vibrate freely but also conducts
those vibrations efficiently to the larger sur-
face of the sound board. If the string support
were truly rigid, the sound board would not
vibrate and we would not be able to hear
the sound of the stringed instrument being
played.

To visualize the above behaviour of real
strings, we model the support as having
mass, Ms. The free end would then be cor-

respond to a support having zero mass and
the rigid end would correspond to an in-
finitely massive support. In the simulation,
we take the end x=0 of the string to be a
real boundary and the end x=L continues to
be rigid.The initial deformation of the string
is once again assumed to be in the form of
Gaussian pulse given by Eq.(13). If Ms is
taken to be the effective mass of the support
at x=0, then, applying Newton’s second law
to the support, we get

Ms
∂2u(x, t)

∂t2 x = 0 = T
∂u(x, t)

∂x
x = 0 . (24)

The finite difference approximation used for
the above condition at the boundary is
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Instantaneous Configuration of the String at t=0.02s

Figure 4. Reflection at Real Boundary at x = 0 and a Rigid Boundary at x = L : T = 10N, L = 1m,

m = 0.001Kgm−1, Support mass, Ms = 1g. The support is equal to the mass of the string so the

real boundary oscillates about its mean position. String Configuration at t = 0, 0.002s, 0.004s, 0.005s,

0.006s, 0.008s, 0.01s, 0.0125s, 0.015s, 0.02s.
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Instantaneous Configuration of the String at t=0.015s
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Instantaneous Configuration of the String at t=0.02s

Figure 5. Reflection at Real Boundary at x = 0 and a Rigid Boundary at x = L : T = 10N, L = 1m, m =

0.001Kgm−1, Support mass, Ms = 0.5g. The support is of mass comparable to the mass of the string

so the real boundary oscillates about its mean position. String Configuration at t = 0, 0.002s, 0.004s,

0.005s, 0.006s, 0.008s, 0.01s, 0.0125s, 0.015s, 0.02s.
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u(1, j + 1) =
Tl2

Msh
u(2, j) +

[
2− Tl2

Msh

]
u(1, j)− u(1, j + 1) (25)

From Eq. (11), the condition for stability
of the solution can be written as

Tl2

mh2 = 1 , (26)

which is re-arranged as,

Tl2

h
= hm . (27)

Substituting Eq. (27) in Eq. (25), we get,

u(1, j + 1) =
mh
Ms

u(2, j) +
[
2− mh

Ms

]
u(1, j)− u(1, j− 1). (28)

Equation (28) is the required discretized
version of the boundary condition for a
“real” support at x=0. This equation is
looped through j=2 to j=M+1 to compute
the displacement of the support at instants
of time corresponding to j=3 upto j=M+2.
To compute u(1,2), the initial condition cor-
responding to the time derivative of trans-
verse displacement is used. This condition
is given by

∂u(x, t)
∂t

t = 0 = 0 . (29)

Using the forward difference approximation
for discretizing Eq.(29), we get

u(i, j + 1)− u(i, j)
l

= 0 . (30)

Putting j=1 for t=0 and i=1 for the boundary
at x=0, we get the required expression as

u(1, 2) = u(1, 1) . (31)

In the present simulation of a real support
the mass of the support (Ms) is given differ-
ent values 50g, 5g, 1g, 0.5g, 0.05g and 0.005g.
The length of the string is taken to be 1 m
with its mass per unit length equal to 0.001
Kg/m. When the mass of the support is 1g
or 0.5g , i.e., comparable to the total mass
of the string, it can be seen in Animation 2
and Animation 3 respectively that the sup-
port vibrates transversely about its equilib-
rium position at x=0. Thus, the support be-
haves like a real boundary. In Animation 4
when the mass of the support is 5g, the am-
plitude of its transverse vibration decreases
and the support starts behaving like a rigid
boundary. For a further increase in the sup-
port mass to 50g in Animation 5, the sup-
port or the end x=0 of the string does not
move at all and hence behaves like a per-
fectly rigid boundary. On the other hand, in
Animation 6 when the support mass is equal
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to 0.05g so that it becomes quite lighter than
the string itself, the support is seen to get
displaced along with the string and the end
x=0 starts behaving like a free boundary. In
Animation 7, the support is made even more
lighter with mass equal to 0.005g and it be-
haves like a completely free boundary. Fig-
ures 4 to 9 depict the instantaneous config-
urations of the string in each of the above
cases respectively.

6 Impedance Discontinuity

There is another kind of boundary ef-
fect that arises due to the “Characteris-
tic Impedance” offered by any medium to
waves travelling across it. For a lossless
medium, this impedance is determined by
the two energy storing parameters, inertia
and elasticity. It can easily be shown that the
characteristic impedance of a string is given
by

Z = (Tm)1/2 . (32)

To illustrate how the travelling waves
would respond to a sudden change of
impedance we simulate a physical situation
in which a string with a certain tension (T)
and mass per unit length (m1) is smoothly
fastened to another string under the same

tension (T) but with a different mas per unit
length (m2). The two strings are taken to be
of equal length of 1 m each. The junction be-
tween the two dissimilar strings is taken at
x=0. The first string extends from x= - L to
x=0 and the second string from x=0 to x=L,
where | L | = 1m. The non-junction ends
of the two strings at x= -L and x= L respec-
tively are assumed to be rigidly fixed. The
specific impedances of the two strings are

Z1 = (Tm1)
1/2 (33)

and Z2 = (Tm2)
1/2 (34)

respectively. Thus, a wave travelling across
the given arrangement of strings would see
an impedance discontinuity at the junction,
x=0.

In the present simulation, a Gaussian
waveform centred in the middle of the first
string (at x=-0.5 m) and moving right to-
wards the junction (at x=0) is taken. Mathe-
matically, such a waveform can be expressed
as

u(x, t) = A[exp−100(x−v1t+0.5)2
] , (35)

where A is the amplitude of the Gaussian

waveform and v1 =
√

T
m1

is the velocity of
wave propagation along the first string. Us-
ing Eq. (35) we can write

u(x, 0) = A[exp−100(x+0.5)2
] = R(x) (say) , (36)

∂u(x, t)
∂t

t = 0 = −200Av1(x + 0.5)exp−100(x+0.5)2
= H(x) (say) , (37)

∂u(x, t)
∂x

x = 0 = −200A(−v1t + 0.5)exp−100(−v1t+0.5)2
= G(t) (say) , (38)
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Instantaneous Configuration of the String at t=0.02s

Figure 6. Reflection at Real Boundary at x = 0 and a Rigid Boundary at x = L : T = 10N, L = 1m, m

= 0.001Kgm−1, Support mass, Ms = 5g. The support mass is quite large as compared to the mass of

the string and the real boundary starts behaving like a rigid boundary. String Configuration at t = 0,

0.002s, 0.004s, 0.005s, 0.006s, 0.008s, 0.01s, 0.0125s, 0.015s, 0.02s. At t = 0.008s, it can be seen that the

pulse reflected at x = 0 has opposite polarity w.r.t. the incident pulse. The support vibrates about its

mean position with small displacement.

and

∂2u(x, t)
∂x2 x = 0 = −200Aexp−100(−v1t+0.5)2

[1− 200(−v1t + 0.5)2] = Q(t) (say) . (39)

The initial conditions given by Eqn.(36)
and Eqn.(37) are valid for any point along
the first string excluding its end at x=-L i.e.,
−L < x <= 0 . The discrete formulation of
Eqn.(36) can be written as

u(i, 1) = R(i), (40)

where j=1 corresponds to t=0 and the index
i takes up values corresponding to all grid
points in the range −L < x <= 0. The
other initial condition given by Eqn.(37) is

discretized using Eqn.(16) as follows,

u(i, 2)− u(i, 0)
2l

= H(i). (41)

Eliminating u(i,0) between Eqn.(18) and
Eqn.(41), we get

u(i, 2) =
u(i + 1, 1) + u(i− 1, 1)

2
+ lH(i),

(42)
where the index i takes up all values cor-
responding to the grid points in the range
−L < x <= 0. The boundary conditions
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Instantaneous Configuration of the String at t=0.02s

Figure 7. Reflection at Real Boundary at x = 0 and a Rigid Boundary at x = L : T = 10N, L = 1m, m

= 0.001Kgm−1, Support mass, Ms = 50g. The support is very massive as compared to the string so

the real boundary behaves like a rigid boundary. String Configuration at t = 0, 0.002s, 0.004s, 0.005s,

0.006s, 0.008s, 0.01s, 0.0125s, 0.015s, 0.02s. At t = 0.008s, it can be seen that the pulse reflected at x = 0

has opposite polarity w.r.t. the incident pulse.

that must be satisfied at the impedance dis-
continuity, x=0, are:

1. A geometrical condition that the trans-
verse displacement is continuous at the
junction for all time. This condition is
incorporated by using Eq.(38) to ensure
the existence of first order derivative of
u(x,t) w.r.t. x at the junction (x=0), hence
implying the continuity of u(x,t) across
the junction. The forward difference ap-
proximation of Eq.(38) is

u(i + 1, j)− u(i, j)
h

= G(j), (43)

for all values of j and the value of index
i corresponding to the junction at x=0.

2. A dynamical condition that the trans-

verse force T( ∂u
∂x ) is continuous at x=0.

This must always hold, else, a finite
difference in the force acting on an in-
finitesimally small mass of the string
at the junction would accelerate it in-
finitely, which cannot be allowed. The
incorporation of this condition is done
by using Eq. (39) to ensure the existence
of second order derivative of u(x,t) w.r.t.
x at the junction (x=0), thereby imply-
ing the continuity of ∂u(x,t)

∂x or T ∂u(x,t)
∂x

across the junction. The finite difference
approximation of Eq. (39) is

u(i + 1, j)− 2u(i, j) + u(i− 1, )
h2 = Q(j),

(44)
for all values of j and the value of
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Instantaneous Configuration of the String at t=0.02s

Figure 8. Reflection at Real Boundary at x = 0 and a Rigid Boundary at x = L : T = 10N, L = 1m,

m = 0.001Kgm−1, Support mass, Ms = 0.05g. The support mass is comparable to the total mass of

the string and the real boundary oscillates about its equilibrium position. String Configuration at t

= 0, 0.002s, 0.004s, 0.005s, 0.006s, 0.008s, 0.01s, 0.0125s, 0.015s, 0.02s. At t = 0.008s, it can be seen that

the pulse reflected at x = 0 has the same polarity as the incident pulse.

index i corresponding to the junction
at x=0. There are two more bound-
ary conditions that correspond to the
non-junction ends of the two strings
to be rigidly fixed, i.e., u(-L,t)=0 and
u(L,t)=0. Animation 8, where T=10
N, m1=0.001Kg/m, m2=0.004Kg/m
and Animation 9, where T=10 N,
m1=0.002Kg/m, m2=0.001Kg/m depict
the behaviour of the wave pulse as it
approaches the junction of the strings.
In both the cases it can be seen that
the incident pulse is partly reflected
and partly transmitted. If A, Ar and At

are incident, reflected and transmitted
amplitudes respectively, then it can be

shown analytically that

Ar

A
=

Z1 − Z2

Z1 + Z2
(45)

and
At

A
=

2Z1

Z1 + Z2
. (46)

In Figure 10 the instantaneous configu-
rations of the string corresponding to An-
imation 8 are shown. Using Eq.(33) and
Eq.(34), we get Z1 = 0.1Kgs−1 and Z2 =

0.2Kgs−1. Substituting these values of Z1

and Z2 in Eq.(45) and Eq.(46), the reflection
coefficient of amplitude is calculated to be

Ar

A
= −0.1

0.3
= −1

3
(47)

and the transmission coefficient of ampli-
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Figure 9. Reflection at Real Boundary at x = 0 and a Rigid Boundary at x = L : T = 10N, L = 1m, m

= 0.001Kgm−1, Support mass, Ms = 0.005g. The support mass is much less than the total mass of the

string so the real boundary behaves like a free boundary. String Configuration at t= 0, 0.002s, 0.004s,

0.005s, 0.006s, 0.008s, 0.01s, 0.0125s, 0.015s, 0.02s.At t = 0.008s, it can be seen that the pulse reflected

at x = 0 has the same polarity as the incident pulse.

tude comes out to be

At

A
=

0.2
0.3

=
2
3

. (48)

The configurations of the string at t =

0.008s and 0.01s in Fig. 10 verify the above
calculated values of reflection and transmis-
sion coefficients. The negative sign of the
reflection coefficient is verified by the ob-
served change in polarity of the reflected
waveform with respect to the incident wave-
form.Further, since m1 < m2, we have v1 =

(T/m1)
1/2 > v2 = (T/m2)

1/2, i.e., the re-
flected pulse moves faster than the transmit-
ted one. The exact speeds of propagation
of the reflected and transmitted wave forms
can also be verified by the plots in Fig. 10. v1

can be computed from the plots correspond-

ing to t = 0.008s and 0.01s. In these plots,
the x-coordinates of the left end of the re-
flected pulse are x1 = −0.532m and x2 =

−0.727m. Using these we get, v1 = x2−x1
t2−t1

=
−0.0.727+0.532

0.01−0.008 = −0.195
0.002 = −97.5ms−1. So

there is a fairly good agreement between
the computed v1 and the theoretical value

of v1 =
√

T
m1

=
√

10
0.001 = 100ms−1. The

negative sign in the computed value is in-
dicative of the reflected pulse moving left-
wards along the negative x-axis. To com-
pute v2, we use the plots corresponding to
t1 = 0.01s and t2 = 0.0125s in Fig. 10.
The x-coordinates of the right end of the
transmitted pulse at these instants are x1 =

0.412m and x2 = 0.527m. So, we get, v2 =
0.527−0.412
0.0125−0.01 = 0.115

0.0025 = 46ms−1, which is also
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Figure 10. Reflection and Transmission of a Wave at an Impedance Discontinuity at x = 0 : String 1

extends from x = -1 to x = 0, L1 = 1m, m11 = 0.001Kgm−1, T=10N. String 2 extends from x = 0 to x

= 1, L2 = 1m, m2 = 0.004Kgm−1, T = 10N. Reflected pulse has opposite polarity w.r.t. the incident

pulse.
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Figure 11. Reflection and Transmission of a Wave at an Impedance Discontinuity at x = 0 : String 1

extends from x = -1 to x = 0, L1 = 1m, m1 = 0.002Kgm−1, T=10N. String 2 extends from x = 0 to x = 1,

L2 = 1m, m2 = 0.001Kgm−1, T=10N. Reflected pulse has the same polarity as the incident pulse.
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in fair agreement with the theoretical value

of v2 =
√

T
m2

=
√

10
0.004 = 50ms−1. Figure

11 depicts the instantaneous configurations
of the string corresponding to the propaga-
tion of reflected and transmitted pulses in
Animation 9 . In this case since m1 > m2,
we have v1 < v2 and Z1 > Z2. Thus,
the reflected pulse travels slower than the
transmitted pulse and there is no change in
the polarity of the reflected pulse with re-
spect to the incident pulse. This can be eas-
ily verified from the plots corresponding to
t = 0.01s, 0.0125s and 0.015s in the figure.

7 STATIONARY WAVES

To illustrate the formation of “Stationary” or
“Standing” waves we simulate a situation
in which one end of the string, say, x=0 is
initially subjected to transverse simple har-
monic motion given by

u(0, t) = asin(2πνt), (49)

where a is the amplitude and ν is the fre-
quency of the motion.The other end of the
string at x=L is kept rigidly fixed. A trans-
verse harmonic wave would travel along the
string in the positive x direction and get re-
flected at the end x=L, giving rise to a re-
flected wave which would travel in the neg-
ative x direction. The interference between
the two oppositely travelling waves results
in the formation of the stationary wave on
the string.

Equation (49) is one initial condition
and the other initial condition is obtained by
differentiating it w.r.t. time as

∂u(0, t)
∂t

t = 0 = 2πνa. (50)

The discrete formulation of Eqn.(50)
using forward difference approximation is
given by

u(1, j + 1) = u(1, j) + l(2πνa), (51)

for all values of the index j corresponding to
all instants of time. The boundary condition
corresponding to the rigid end at x = L can
be written as u(L,t) = 0 or as

u(i, j) = 0, (52)

for all values of j and the value of index i
corresponding to the end x=L of the string.

In Animation 10 it can be seen that
the stationary wave does not come into ex-
istence immediately. It is only when the
wave reflected at x=L has arrived back at the
driven end x=0 that we have the formation
of standing wave. Thereafter, the string con-
tinues to vibrate in a particular mode pro-
vided the frequency of the simple harmonic
motion of the end x=0 is given by the rela-
tion

νn =
n

2L

√
T
m

, (53)

where n = 1, 2, 3, .... is the mode num-
ber. Equation (53) can be easily deduced in
an analytical treatment of stationary waves.
Once the required mode has been estab-
lished this way, the end at x=0 is held sta-
tionary. Figure 12 shows the instantaneous
configurations of the string corresponding
to Animation 10. In this simulation the end
x=0 is made to oscillate with a frequency
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Instantaneous Configuration of the String at t=0.008s 
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Instantaneous Configuration of the String at t=0.0095s
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Instantaneous Configuration of the String at t=0.01s
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Instantaneous Configuration of the String at t=0.0112s
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Instantaneous Configuration of the String at t=0.012s 
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Instantaneous Configuration of the String at t=0.0152s
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Instantaneous Configuration of the String at t=0.0185s
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Instantaneous Configuration of the String at t=0.0192s
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Instantaneous Configuration of the String at t=0.02s 

Figure 12. Formation of Stationary Waves in the Tenth Harmonic : L = 0.5m, T = 10N, m =

0.001Kgm−1, v = 1000s−1, a = 0.5m. String Configuration at t = 0.002s, 0.0025 0.0035s, 0.0045s, 0.005s,

0.0075s 0.008s, 0.0095s, 0.01s, 0.0112s, 0.012s, 0.0152s, 0.0185s, 0.0192s & 0.02s.
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Instantaneous Configuration of the String at t=0.002
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Instantaneous Configuration of the String at t=0.0025s
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Instantaneous Configuration of the String at t=0.0035s 
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Instantaneous Configuration of the String at t=0.0045s 
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Instantaneous Configuration of the String at t=0.005s 
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Instantaneous Configuration of the String at t=0.0075s 
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Instantaneous Configuration of the String at t=0.008s 
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Instantaneous Configuration of the String at t=0.0095s
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Instantaneous Configuration of the String at t=0.01s
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Instantaneous Configuration of the String at t=0.0112s
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Instantaneous Configuration of the String at t=0.012s 
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Instantaneous Configuration of the String at t=0.0152s
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Instantaneous Configuration of the String at t=0.0185s
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Instantaneous Configuration of the String at t=0.0192s
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Instantaneous Configuration of the String at t=0.02s 

Figure 13. Formation of Stationary Waves in the Sixth Harmonic : L = 0.5m, T = 10N, m =

0.001Kgm−1, v = 600s−1, a = 0.5m. String Configuration at t = 0.002s, 0.0025 0.0035s, 0.0045s, 0.005s,

0.0075s 0.008s, 0.0095s, 0.01s, 0.0112s, 0.012s, 0.0152s, 0.0185s, 0.0192s & 0.02s.
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equal to 1000s−1 , i.e., νn = 1000s−1. With
T = 10N, m = 0.001Kgm−1, L=0.5 m, Eq.
(53) gives n=10, i.e., the string vibrates in
the tenth mode or the tenth harmonic. Simi-
larly, Animation 11 and Figure 13 depict the
formation of stationary wave pattern when
νn = 600s−1 and the string vibrates in the
sixth harmonic (n=6).

Further, it can be seen that in the nth

harmonic there are (n-1) positions (between
the fixed ends) equally spaced along the
string where the displacement is always
zero. These points are called “nodal points”
or “nodes”. The points of maximum dis-
placement are also equally spaced and are
called “antinodes”. At the antinodes, the
displacement can be seen to be equal to the
sum of the amplitudes of the constituent su-
perimposing travelling waves.

The values of the physical
parameters(L,T,m,ν) can be easily changed
in the given SCILAB codes to visualize
other harmonics.

8 CONCLUSION

The present work is a comprehensive illus-
tration of the boundary behaviour of trans-
verse waves in strings. By using computa-
tional techniques to solve a given physical
problem the scope of the problem can be in-
creased manifold as compared to its analyt-
ical treatment. In some problems pertain-
ing to practical situations an analytical treat-
ment can either be quite challenging or not
possible at all. In such cases a computational

approach can be adopted to solve the prob-
lem. For example, an analytical treatment
of “real boundary” as done in this work
would be cumbersome. On the other hand,
the scope of the problem can be easily ex-
tended to make the support more realistic
by modelling it as a damped harmonic oscil-
lator.The discussion on reflection and trans-
mission of waves at an “impedance discon-
tinuity” can also be extended to illustrate
the phenomenon of “impedance matching”,
a concept with immense practical impor-
tance in electromagnetic wave propagation
and communication. Another extension that
can be implemented with ease in the present
treatment of stationary waves is to inves-
tigate and illustrate the concept of “Stand-
ing Wave Ratio”. This ratio is of signifi-
cance when the boundaries encountered by
progressive waves are not perfectly rigid,
resulting in incomplete or partial reflection
of these waves. In such cases we have the
formation of stationary wave pattern super-
posed on travelling waves so that the ampli-
tude at nodes is not zero.
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Abstract

A detailed study on the shape of interfer-

ence fringes in Young’s double slit experiment

(YDSE) is reported in this article. The nonlocal-

ized fringes are confocal hyperboloids with the

coherent sources as the foci and the observed

shape depends on the position and orientation

of the screen. It has been shown that the fringes

are hyperbolic in shape on a screen placed at

a position parallel to the plane containing the

coherent sources while they are concentric

circles on a screen placed perpendicular to the

line joining the sources. We consider some

practical values of path difference between the

interfering waves of visible light and explain that

fringes actually appear as straight lines. We use

Android version of GeoGebra, a freeware, to

simulate the shape of interference fringes.

1 Introduction

Interference, a phenomenon of superposi-
tion of waves, is a topic of paramount inter-
est in the field of physics and is taught from
the school level to the postgraduate level.
Young’s double slit experiment (YDSE) is
a demonstrative experiment on interference
of light waves first performed by Thomas
Young in 1801. It is the experiment that es-
tablished the wave theory of light. Simi-
lar experiment, later in 1961, was performed
by Claus Jönsson but with electron beam [1]
demonstrating the prediction of quantum
theory.

Figure 1 depicts the schematic of YDSE,
which is basically an interference produced
by the method of division of wavefront. As
the wave theory suggests, the interfering
beams produce a constructive pattern for a
path difference equal to the integral mul-
tiple of the wavelength (∆ = mλ), while
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Figure 1: Schematic of Young’s double slit
experiment. Coherent sources S1 and S2 are
produced from a monochromatic source S.

a destructive pattern for a path difference
equal to the odd integral multiple of the
half-wavelength (∆ = (2m + 1)λ/2)[2, 3, 4].
Fringe of a given order is the locus of the
points having same path difference. The
fringes in YDSE are nonlocalized meaning
that the fringes have infinite extent and can
be viewed, in principle, from any position.
The shape of the fringes i.e. the equation of
loci on the xy plane (Figure 1) is hyperbola
which is shown in textbooks [3, 4]. Here, in
this article, we study the shape of the fringes
in detail and discuss the shape as appears
on a screen placed at different positions. We
consider two pinholes as coherent sources
and show the shape of fringes in three di-
mension are hyperboloid with the sources as
the foci. However, the fringes may appear as
circular, hyperbolic or even as straight line
depending on the position and orientation
of the screen with respect to the sources. If

the screen is placed on xy plane in front of
two point sources, the fringes are hyperbolic
in nature. However, the fringes on this plane
actually appear as straight line as the eccen-
tricity of the hyperbolae is high. If the screen
is placed perpendicular to the line joining
the two point sources (yz plane), the fringes
appear as concentric circles. The study takes
into account of some practical values for the
visible light. We use GeoGebra 2D and 3D
graphing calculator [5], a free online soft-
ware, for studying the shape of interference
fringes. A recent article [6] reported a sim-
ilar study with a different software Scilab.
With the android version of GeoGebra, the
present article reports a more detail study
including the position of the screen perpen-
dicular to the line joining the sources, and
considering practical values for visible light
in a more lucid way.

2 Hyperbola and Hyperboloid

In this section we will briefly discuss the
geometry of hyperbola and hyperboloid, as
relevant to the subject matter of the arti-
cle. A hyperbola represents the locus of the
points P on a plane which have a constant
difference of the distances PF1 and PF2 with
respect to two fixed points F1 and F2, called
foci i.e. PF1 ∼ PF2 = 2a, a = constant (fig-
ure 2(a)). The center of the hyperbola is the
midpoint M of the line segment joining the
foci (MF1 = MF2 = c). This line segment,
called the major axis, contains the vertices
V1 and V2 which have equal distance a to
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Figure 2: (a) Hyperbola with straight line as
the asymptote (b) Hyperboloid.

the center M. The ratio e = c/a is called the
eccentricity of the hyperbola. The equation
of a hyperbola is given by

x2

a2 −
y2

b2 = 1 (1)

where b2 = c2 − a2 and the eccentricity,
in terms of a and b is

e =
c
a
=

√
a2 + b2

a
=

√
1 +

(
b
a

)2

(2)

From eq. 1,

y = ±b
a

√
x2 − a2 ≈ ±b

a
x (3)

for larger values of |x|. Thus it follows
from eq. 3 that hyperbola approaches two
straight lines, called asymptotes for larger
values of |x|. One asymptote is shown in fig-
ure 2(a). It should also be noted that the hy-
perbola approaches to the asymptotic nature
even at smaller values of |x|when the eccen-
tricity is very large i.e. e >> 1 or, b >> a.

Figure 3: Projection of a hyperboloid on xy
plane-a hyperbola.

A hyperboloid is the three dimensional
geometry of a hyperbola, having symmetry
of revolution in a plane, say yz. It is just like
a nest but in opposite direction (figure 2(b)).
The equation of a hyperboloid is given by

x2

a2 −
y2 + z2

b2 = 1 (4)

It is clear from figure 3, a hyperboloid if
projected on xy plane, appears as hyperbola.
On the other hand, it appears as circle when
projected on yz plane (figure 4).

3 Shape of Fringes

We consider two pinholes S1 and S2 illu-
minated by a monochromatic point source
of light S (figure 1). The pinholes act as
two coherent sources which emit spherical
wavelets. Superposition of these wavelets
produces interference.
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Figure 4: Projection of a hyperboloid on yz
plane-a circle.

3.1 Mathematical Derivation

We calculate the path difference between the
interfering waves at any point P (x, y, z) on
the screen. As seen from the figure 1,

S2P =

[
z2 + y2 +

(
x +

d
2

)2
]1/2

S1P =

[
z2 + y2 +

(
x− d

2

)2
]1/2

Hence, the path difference at the point
P is ∆ = S2P−S1P and is given by

∆ =

[
z2 + y2 +

(
x +

d
2

)2
]1/2

−

[
z2 + y2 +

(
x− d

2

)2
]1/2

Or,

∆ +

[
z2 + y2 +

(
x− d

2

)2
]1/2

=

[
z2 + y2 +

(
x +

d
2

)2
]1/2

(5)

Squaring both sides of eq. 5 and simpli-
fying, we have

x2(
∆
2

)2 −
y2 + z2(

d
2

)2
−
(

∆
2

)2 = 1 (6)

Eq. 6 represents the locus of an interfer-
ence fringe corresponding to a given path
difference ∆. Comparing eq. 6 with eq. 4,
a = ∆/2, b =

√
(d/2)2 − (∆/2)2 and hence

c =
√

a2 + b2 = d/2 i.e. the distance from
the center to the pinholes S1, S2 (figure 1)
and the distance from the center to the foci
F1, F2 (figure 2) are same and they lie on
same axis (x axis). Thus the shape of in-
terference fringes is described by eq. 6 in
three dimension which resemblances hyper-
boloid (eq. 4) with foci at S1 and S2.

3.2 Simulation of Fringe Shape

We use GeoGebra, a noncommercial free-
ware, developed by Markus Hohenwarter
et. al. [5] to simulate the shape of inter-
ference fringes for different positions of the
screen with respect to the point sources. It
is an interactive mathematical software that
provides geometry, algebra, statistics and
calculus applications mainly intended for
teaching and learning at all levels. GeoGe-
bra is available on desktop applications for
Windows, macOS, Linux, and tablet appli-
cations for Android, iPad and Windows. Its
web application is based on HTML5 tech-
nology. The fringe shape simulation, re-
ported in this article, has been performed
with the android application of the software.
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While simulating the fringe shape we
consider some practical values of the wave-
length (λ), the separation between the point
sources (d) and the position of the screen
with respect to the sources (D or D′). Here
we take λ = 6000 Å and d = 1 mm for all
calculations.

(1) Screen placed on xy plane: Let the
screen is placed on xy plane at z = D = 1 m.
The path difference for constructive fringes
∆ = mλ (m = 1, 2, 3, ...) is on the order of
λ and hence ∆ << d. With respect to the
origin taken at O’ (x′ = x = 0, y′ = y =

0, z′ = z− D = 0) (figure 1), eq. 6 reduces to

x2(
∆
2

)2 −
y2(
d
2

)2 = 1 (7)

which represents hyperbola on xy plane
with the point sources S1 and S2 as the foci
that lie on the x axis at z = 0. A set of con-
focal hyperbolae will be obtained for a set
of values of the path difference ∆. In other
words, fringes of different orders will form
a set of confocal hyperbolae as shown in the
figure 5.

The eccentricities of the hyperbolae are
given by (eq. 2)

e =

√
1 +

(
d
∆

)2

≈ d
∆

For d = 1 mm and ∆ = 10λ = 60 nm,
the eccentricity e ≈ 167 which is very high.
The observation, in practice, is made over a
very small region and hence the fringes ap-
pear as straight fringes (figure 6). The fringe
width, defined as the separation between

two consecutive bright or dark fringes is

β =
λD
d

= 0.6 mm

From the plot we see, same value of
the fringe width β when the observation is
made near the center.

Figure 5: A set of confocal hyperbolae rep-
resenting fringes of different orders on xy
plane at z = D = 1 m. Hyperbolae marked
as a, b, c, d, e correspond to different values
of ∆.

(2) Screen placed on yz plane: Now we
consider a different position of the screen.
Let the screen is placed on yz plane at x =

D′, perpendicular to the line joining the
point sources S1 and S2. For large values of
D′/∆, eq. 6 reduces to
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Figure 6: Hyperbolic fringes of high eccen-
tricity as appear on xy plane when observa-
tion is made over small region.

y2 + z2(
d
2

)2
−
(

∆
2

)2 =
D′2(
∆
2

)2

⇒ y2 + z2 = D′2
[(

d
∆

)2

− 1

]
(8)

Eq. 8 represents a circle of radius r =

D′
√
(d/∆)2 − 1 for a given ∆. For this po-

sition of the screen, the path difference be-
tween the interfering waves is smaller than
the separation between the sources i.e. ∆ ≤
d. It should be noted that ∆ = d at the cen-
ter while ∆ → 0 as r → ∞. Thus we may
replace ∆ by d− mλ in eq. 8 where m is the
order number of fringes (m = 0 for the cen-
tral fringe). The fringes of different orders
will appear as concentric circles (figure 7) on

Figure 7: Fringes of concentric circles as ex-
pected on yz plane (x = D‘ = 5 cm). Circles
marked as a, b, c, d, ... correspond to different
values of ∆.

the screen. As seen from figure 7, the cir-
cular fringes have large radii and they are
widely separated around the center. In prac-
tice, observation is made over small region
and hence the fringe pattern will remain un-
observed on the screen at yz plane around
the center.

In order to visualize the fringes, obser-
vation may be made somewhere else. Fig-

Figure 8: Variation in the separation be-
tween consecutive circular fringes (β′) with
the order number (m).
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Figure 9: Circular fringes as appear within
small field of view.

ure 7 shows that the separation between
consecutive fringes (β′) decreases for larger
values of r i.e. at higher orders. How-
ever, the decrease in β′ with the increase in
m is not monotonic in nature. The separa-
tion β′ decreases monotonically upto some
value of m, above which it increases mono-
tonically; a feature expected from the ge-
ometry of confocal hyperboloids. We cal-
culated the radii of the circular fringes for a
wide variation in the order number m with
D′ = 5 cm and plotted in figure 8. As can be
seen from figure 8, the separation becomes
minimum (β′ ≈ 80 µm) somewhere around
m = 300. If observation is made around
these fringes over a small region, they will
appear as straight fringes (figure 9).

4 Conclusion

Using the android version of a freeware Ge-
oGebra, we report a detailed study on the
shape of fringes produced in Young’s dou-

ble slit experiment. The shape of the fringes
is hyperboloid in three dimension and when
projected on a screen, appears as hyperbola
or circle depending on its position and ori-
entation relative to the sources. It is shown
that the eccentricity of the hyperbola and the
radius of the circle are very large in practice
while the observation is made over small re-
gion, and hence the fringes actually appear
as straight lines. Students at the undergrad-
uate level have observed the shape in Fres-
nel’s biprism experiment and can easily cor-
relate with the observations reported here.
The study can be further extended to simu-
late the fringe-shape for other orientation of
the screen at a fixed position.
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Abstract

In many text books used for undergraduate

courses, equipartition theorem (EPT) is defined

only for quadratic Hamiltonian. In this article

we apply the EPT for many non linear (non

quadratic) Hamiltonian, which will help the

students to have a more understanding on EPT.

We also give some applications of Tolman’s

definition of EPT

1 Introduction

Equipartition theorem is a very useful result
of thermodynamics which says ”If a system
described by classical statistical mechanics

is in equilibrium at the absolute temperature
T, every independent quadratic term in its
energy has a mean value equal to 1

2 kT ” [1].
In many text books [1, 2, 3, 4, 5] it is defined
only for quadratic Hamiltonian and energies
of non quadratic forms are not discussed. A
discussion with the students and teachers by
the authors, found that many of the students
are not aware about the energy partition by
non quadratic Hamiltonian. Many of them
believe that all types of energies contribute
1
2 kT internal energy, where k is the Boltz-
mann constant.

35/4/5 1 www.physedu.in
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2 Finding internal energy

Different physicists had studied and con-
tributed to the equipartition theorem. Wa-
terstone [6] studied about the motion of
molecules in gases and presented the first
statement of equipartition theorem. Lord
Rayleigh [7] used equipartition theorem in
the black body problem to find the distribu-
tion of energy. Maxwell [8] worked out the
general principles of statistical equilibrium
by studying molecular collisions. Method
of kinetic energy is valid for short duration
of collision of molecules and Maxwell over-
came this problem by postulating a mechan-
ical system in generalized Lagrange Hamil-
tonian coordinates. For computing equi-
librium properties of the system, Maxwell
used equipartition theorem. Paradox of
specific heat and ultraviolet catastrophe
were the observations that mismatches with
the assumptions of equipartition theorem
which were later solved with the emer-
gence of quantization of energy [9, 10]. We
have two methods to find average energy,
they are the probability method given by
Maxwell [8] and the canonical ensemble
method given in text books [1, 2].

2.1 Probability method

For a classical system in equilibrium, we
write the energy as

E = E(q1, q2...q f , p1, p2, ...p f )

where qs and ps are the generalized coordi-
nates and conjugate momenta. The average

internal energy can be found using the equa-
tion

< E >=

∫
Ee−βEdq1...dp f∫
e−βEdq1...dp f

By integration and rearrangement we get [1]

< E >= − ∂

∂β
ln
(∫

e−βEd3q
)

For 1D ideal gas with E = p2

2m , we get

< E >=<
p2

2m
>=

3k T
2

For energy kq2

2 , we get

< E >=<
kq2

2
>=

3k T
2

Similar calculations show that for a 3D har-
monic oscillator

< E >=<
p2

2m
+

kq2

2
>= 3kT

and for a particle in a gravitational field

<
p2

2m
+ mgz >=

5kT
2

where z is the height of the particle.

2.2 Canonical ensemble method

Now we can find the internal energy from
the partition function of a system. Let the
energy of the system be

E(q) = aqn

where q is either generalized coordinate or
conjugate momentum. The energy depen-
dence on n may be of three types n > 0, n =
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0 and n < 0 where n represents a num-
ber. Let us evaluate the average energy for
n = 1, 2, 3, 4. The partition function for a
system in 3 dimension (3D) is

Q = C
∫

q2dqe−βE(q)

where C = 4πV
h3 for energy in terms of mo-

mentum only and C = 4π for energy in
terms of position only. Internal energy is
given by [5]

U = kT2
(

∂ ln Q
∂T

)
N,V

1. For n > 0

Q = C
∫

q2dqe−βE(q)

When E(q) = q we get

Q = C
∫

q2dqe−βq

Using the standard integral∫ ∞

0
xndxe−µx = n!(µ)−n−1

we get

U = 3NkT

Similarly for E(q) = q2, q3 and q4 we get

U =
3NkT

2

U =
3NkT

3

U =
3NkT

4

The above expressions show that in
general, the mean internal energy de-
pends on power of the energy function
as

U =
DNkT

n
(1)

where n is the power of energy function
and D is the dimension.

2. For n < 0 or negative

U =
DkT

n
We get the same expression for the in-
ternal energy, but when we substitute
negative values for n we get average en-
ergy as negative, which means the par-
ticle is confined .

3. For n = 0 we have

E = a

Here energy is a constant. So, the av-
erage energy or the internal energy will
be same as the given energy. So

< E >= a

which is an expected result.

3 Tolman’s EPT

Tolman [11] proposed a generalized
equipartition theorem (called I general-
ized EPT) given by〈

q
∂E
∂q

〉
= k T (2)

This is derived from the partition function
as below. Partition function

35/4/5 3 www.physedu.in
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Q =
∫

dq1dq2...dqnCe(−βE(q1,q2....qn))

where qi are generalized coordinates and
generalized momenta. Taking a derivative
of q1e−βE and substituting in the partition
function and integrating with proper limits
we get

kT =

∫
dq1dq2...dqnq1

∂E
∂q1

e−βE

Q

Right hand side is the definition for the av-
erage of

〈
q1

∂E
∂q1

〉
. So〈
q1

∂E
∂q1

〉
= kT

This equation is Tolman’s definition of EPT
given by Eqn (2).

3.1 Some Examples

Using Tolman’s equation we get

1. For E = ax5 〈
ax5
〉
=

kT
5

2. For E = pxc

〈pxc〉 = kT

3. For E = p2
x

2m 〈
p2

x
2m

〉
=

kT
2

These results agree with the general for-
mula obtained for internal energy or av-
erage energy given by Eqn (1). Here we
had taken 1 D systems.

4 Application of Tolman’s EPT

Phillies [12, 13] proposed an application for
Tolman’s EPT formula and he called the re-
sult as second generalized equipartition the-
orem. Accordingly,〈

qaqb
∂E
∂qa

∂E
∂qb

〉
= (kT)2+〈

qaqb kT
∂2E

∂qa∂qb
+ qb

∂qa

∂qb
kT

∂E
∂qa

〉
If qa = qb = px we get

〈
p2

x
px

m
.
px

m

〉
= (kT)2 +

〈
p2

xkT
1
m

+ pxkT
px

m

〉
〈(

p2

2m

)2〉
=

3(kT)2

4

So
< E2 >=

3
4

k2T2

Thus this application gives mean square en-
ergy of a system. This is very interesting be-
cause the mean square fluctuation of energy
can be easily found if < E2 > and < E >2

are known. For example, for 1 D ideal gas

< E >2=

(
1
2

kT
)2

and here mean square fluctuation is given
by

< ∆E2 >=< E2 > − < E >2

On substituting < E2 > and < E >2 we get

< ∆E2 >=
1
2

k2T2

Thus using first generalized equipartition
theorem we can find < E >2 and using sec-
ond generalized equipartition theorem we
can find < E2 >
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4.1 Example

For a pure anharmonic oscillator (without
kinetic energy)

E = aqn

Using the second equipartition theorem for
1D anharmonic oscillator we get

< E2 >=
n + 1

n2 (kT)2

Using the value for < E > we get

< ∆E2 >=
k2T2

n

5 < E2 > for 3D systems

The above formula to find < E2 > is suit-
able only for a 1 D system. To find < E2 >

for 3D system we have to use the probability
method. We know

< E2 >=
C
∫

E2p2dpe−βE∫
Cp2dpe−βE

where C is a constant. Using the above for-
mula we can show that for

1. E = p2

< E2 >=
5× 3
2× 2

(kT)2

2. E = p4

< E2 >=
7× 3
4× 4

(kT)2

3. E = p6

< E2 >=
9× 3
2× 2

(kT)2

Generalising for E = pn

< E2 >=
3(n + 3)

n2 (kT)2

5.1 < ∆E2 > for 3D systems

From < E >2 and < E2 > for systems with
energy

1. E = pc we get

< ∆E2 >= 3(kT)2

and for

2. E = P2

2m

< ∆E2 >=
3
2
(kT)2

6 Non linear oscillators

6.1 Quartic oscillator

Quartic oscillator is an anharmonic oscilla-
tor studied in detail over decades [15, 16,
17]. This oscillator is non linear in na-
ture and it shows chaotic behaviour in most
regions where it is defined. This oscilla-
tor is studied both in classical and quan-
tum realms [15, 16]. Biswas et al [14] stud-
ied λx2m type general anharmonic oscilla-
tors and found the energy spectrum, where
m = 2, 4.. and λ is a constant. For a quartic
oscillator with N degrees of freedom

H = ∑
i

pi
2

2
+ ∑

i,j

αij

2
qi

2qj
2

and for one degree of freedom

H = p2 + q4

We will apply EPT for above hamiltonian.
As per EPT

< E >=
1
2
(kT) +

1
4
(kT)
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< E >=
3
4
(kT)

< ∆E2 >=
1
2
(kT)2 +

1
4
(kT)2

< ∆E2 >=
3
4
(kT)2

These results matches very accurately
with V. M. Bannur et. al. [15] found using
the method of statistical mechanics. Also we
get

< E2 >=
17
16

(kT)2

for 1D and

< E2 >=
81
16

(kT)2

for 3D.

6.2 Duffing oscillator

Anharmonic oscillations and different phys-
ical processes are studied with Duffing os-
cillators [18]. Different physical systems are
solved with Duffing oscillator as prototype.
Hamiltonian for a Duffing oscillator is

H =
1
2

p2
y +

1
2

αx2 +
1
4

βx4

Using EPT

< E >=
1
2
(kT) +

1
2
(kT) +

1
4
(kT)

< E >=
5
4
(kT)

< ∆E2 >=
1
2
(kT)2 +

1
2
(kT)2 +

1
4
(kT)2

< ∆E2 >=
5
4
(kT)2

Also
< E2 >=

29
16

(kT)2

for 1D and

< E2 >=
141
16

(kT)2

for 3D.

7 Conclusions

In this article EPT is applied for systems
with non quadratic and non linear Hamilto-
nians. We used canonical ensemble method
and also Tolman’s definition for EPT for
finding internal energies. We hope that un-
dergraduate students will get more insights
about EPT by studying about these types of
Hamiltonian.
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Abstract

Visual clues to realize the effect of phase to wave

phenomena such as the acoustic Doppler effect

and the interference of two waves are presented

on the basis of elementary geometry. Diagrams

focused on the phase of waves are effective to

understand the mechanisms of these phenomena

intuitively. Students can understand those dia-

grams without preliminary knowledge about ad-

dition theorems of circular functions. This sub-

ject can be regarded as a cross-curricular study

of mathematics education and physics educa-

tion.

1 Introduction

Visual thinking by pictures or diagrams is
effective to raise an image and understand
wave phenomena deeply. Explanation by
equations is not necessarily help students
realize why a particular phenomenon oc-
curs and how it progresses, although stu-

dents can improve their proficiency level
of mathematical description. For example,
the essence of the acoustic Doppler effect is
the invariance of the wave number held be-
tween a listener and the source of sound[1].
Some students raise a question how the in-
variance of the wave number, or phase, in-
duces the acoustic Doppler effect. Textbooks
on elementary physics, however, have not
provided instructive pictures or diagrams
that we can understand the causal relation-
ship between the invariance of the number
of waves and the Doppler effect. Interfer-
ence is also difficult for students without the
preliminary knowledge of the trigonometric
identities to understand. Circular functions,
sin and cos, are necessary to learn the con-
structive and deconstructive interference of
traveling waves. The present article pro-
vides diagrams as visual clues to realize the
mechanisms of these wave phenomena on
the basis of elementary geometry without
requiring preliminary knowledge about ad-
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dition theorems of circular functions. The
aim is not to develop a simple and intuitive
derivation of these phenomena but to illus-
trate the effect of phase to these phenomena,
although the present approach seems a little
cumbersome for the acoustic Doppler effect.

2 Diagrams for explaining acoustic

Doppler effect

When a sound source, a listener, or both
move relative to the medium, the frequency
of the sound heard by the listener is not the
same as when the source and the listener are
at rest in the medium. These phenomena are
called as the acoustic Doppler effect, which
are separated into three cases:

Case 1: The listener is moving rel-
ative to the medium, while the
source is at rest there.

Case 2: The source is moving rel-
ative to the medium, while the lis-
tener is at rest there.

Case 3: The listener and the source
are moving relative to the medium.

We set three coordinate reference systems,
KM, KL, and KS, which are fixed to the
medium, the listener, and the source, respec-
tively. The velocity of sound, the listener,
and the source with respect to the medium
are denoted by u, vL, and vS, respectively.
The sound frequency, f , is constant, and the
frequency with respect to the listener in each
case are denoted by 1 fL, 2 fL, and 3 fL, respec-
tively. We define the phase function φ(x, t)

of a sinusoidal traveling wave propagating
in the x direction to be the argument of the
wave function sin(ωt − kx) at a fixed time t
and fixed x,

φ(x, t) = ωt − kx, (1)

where x expresses the position xM, xL, and
xS measured at the reference systems, KM,
KL, and KS, respectively [2]. The frequency,
f = ω/2π, is expressed with the angu-
lar frequency, ω, and f can be replaced by
1 fL =1 ωL/2π, where 1ωL is the angular fre-
quency with respect to the listener in Case
1. The frequency and angular frequency in
Cases 2 and 3 are also denoted in the same
way. The rate of increase of phase angle per
unit length is k = 2π/λ, where the wave
length, λ, expresses 1λ, 2λ, and 3λ measured
in Cases 1, 2, and 3, respectively. The num-
ber of waves is φ(x, t)/(2π), and thus we
can consider the phase function instead of
the number of waves. In contrast to the
number of waves, the phase function is ef-
fective to visual thinking, because the value
of the phase function is the angle in the di-
agram of phase such as Figures 1, 3, and 5.
At a given time t the phase angle decreases
linearly with x in the term −kx, while at a
given position x the phase angle increases
linearly with t in the term ωt [2]. The phase
function expressed by (1) indicates that go-
ing to greater x decreases the phase angle.
In Figures 1, 3, and 5, a counterclockwise di-
rection is a positive direction. For any one of
the three cases, the numbers of waves mea-
sured at KL and KS are the same.

By drawing the invariance of the phase
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angle, or the numbers of waves, in the dia-
grams of Figures 1, 3, and 5, we can consider
the mechanism of the acoustic Doppler ef-
fect in each case.

Case 1. The Galileo transformation con-
nects xL with xS as shown in Figure 2. As-
suming the origins xL = 0 and xS = 0 of
KL and KS coincide at time t = 0, we have
xL = xS − vLt. The phase angle decrease,
−kx, is different depending on the coordi-
nate reference systems, while the phase an-
gle measured in each system, ωt − kx, is the
same. Thus, the frequency, or the angular
frequency, with respect to the listener is dif-
ferent in each system. For any one of the
three cases, the wavelength measured in KL

and KS are the same[3, 4]. This fact implies
that 1k = 2π/1λ is the same in the two sys-
tems. From Figures 1 and 2, the relation

1ωL = ω − 1kvL (2)

is clear at a glance, and (2) can be rewritten
as

2π 1 fL = 2π f − 2π
1λ

vL, (3)

where f = u/1λ is the source frequency.
With slight rearrangements, we obtain the
desired relation

1 fL =
u − vL

u
f . (4)

The Galileo transformation causes the phase
difference of −2πvL f t/u between 2π 1 fLt
and 2π f t with that of −1kvLt between
−1kxL and −1kxS at the same time. In some
textbooks [1], (4) is deduced from the phase
invariance, 1ωLt − 1kxL = ωt − 1kxS, and

the Galileo transformation equation, xL =

xS − vLt. Figure 1 shows visually the cause
of the difference of the frequency between
KL and KS.

Case 2. In contrast to Case 1, the source
frequency is f = (u − vS)/2λ. From Figures
3 and 4, the relation

2ω = ω + 2kvS (5)

is clear at a glance, where 2k = 2π/2λ. In the
same way as Case 1, we obtain the desired
relation

2 fL =
u

u − vS
f . (6)

Case 3. From Figure 6, we have xS −
xL = (vL − vS)t, and thus the difference
between −3kxS and −3kxL is 3k(vL − vS)t,
where 3k = 2π/3λ. The source frequency
is f = (u − vS)/3λ. From Figures 5 and 6,
the relation

ω = 3ωL + 3k(vL − vS) (7)

is clear at a glance. In the same way as Cases
1 and 2, we obtain the desired relation

3 fL =
u − vL

u − vS
f . (8)

REMARK.

We have two approaches to deriving the for-
mulae of the Doppler effect, (4), (6), and (8).
One approach is based on the key points that
the wavelength of the sound wave is invari-
ant across the coordinate reference systems,
KM, KL, and KS, and that the sound velocity
relative to the listener and the sound source
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ω  tL

− k xS

ω t
− k x

− k v  t

the same phase 

(the same numbers of waves)

1

 L

 L

amplitude of waves

1

1 1

Figure 1. Phase invariance of the sound wave across KL and KS in Case 1. The listener moves away

from a stationary source. The projection to the vertical axis represents the amplitude of sound wave.

From Figure 2, (−1kxS)− (−1kxL) = −1kvLt.

x
M

xS

xL

O M

O S

O L

v  tL

Figure 2. The relation among xM, xL, and xS in Case 1. The Galileo transformation equation is

xL − xS = vLt.

is depend on their motion [3, 4]. For exam-
ple, in Case 3,

3λ =
u − vL

3 fL
=

u − vS

f
, (9)

which is rewritten as (8). Another approach
is based on the invariance of the phase and
wavelength of the sound wave across the co-
ordinate reference systems at the same time

as shown in the present study. As suggested
by these two approaches, the relative veloc-
ity of the sound wave is related to the phase
invariance of the sound wave under the in-
variance of the wave length across the coor-
dinate reference systems. From φ(xS, t) =

ωt − kxS and φ(xL, t) = ωLt − kxL at the
same time t, we obtain
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ω  tL

− k x

ω t
−  k x S

 k v  t

the same phase 

(the same numbers of waves)

 S

2

amplitude of waves

2

22
L

Figure 3. Phase invariance of the sound wave across KL and KS in Case 2. The source moves away

from a stationary listener. The projection to the vertical axis represents the amplitude of sound wave.

From Figure 4, (−2kxS)− (−2kxL) =
2 kvSt.

x
M

xS

xL

O M

O L

O S

v  tS

Figure 4. The relation among xM, xL, and xS in Case 2. The Galileo transformation equation is

xS − xL = vSt.

φ(xS, t)− φ(xL, t) = 2π
uSt − xS

3λ
− 2π

uLt − xL
3λ

=
2π
3λ

[(uS − uL)− (vL − vS)]t, (10)

where uS and uL are the sound veloc-
ity relative to the source and the listener,
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ω  tL

− k xS

ω t
− k x L

the same phase 

(the same numbers of waves)

− k xM

k v  t L

k v t S

3

amplitude of waves

3

3
3

3

3

Figure 5. Phase invariance of the sound wave across KL and KS in Case 3. Both of the listener and

the source move in the medium. The projection to the vertical axis represents the amplitude of sound

wave. From Figure 6, (−3kxS)− (−3kxL) = −3k(vL − vS)t.

x
M

xS

xL

O M

O L

OS

v  tL

v tS

Figure 6. The relation among xM, xL, and xS in Case 3. The Galileo transformation equation is

xS − xL = (vL − vS)t.

respectively, and the Galileo transformation
equation, xS − xL = (vL − vS)t, holds at the
same time t as seen from Figure 6. The in-
variance of the phase, φ(xS, t) = φ(xL, t),
deduces uS + vS = uL + vL, either side of
which indicates the sound velocity with re-
spect to the medium, u, and thus uS = u− vS

and uL = u − vL can be confirmed. Con-
versely, the phase invariance, φ(xS, t) =

φ(xL, t), is deduced by assuming uS + vS =

uL + vL in (10). Thus, relative motion with
respect to a third entity, the medium, is in-
volved. In contrast to the acoustic Doppler
effect, the relativistic Doppler effect of light
is caused by the relative motion of the source
and the observer. Figures 2, 4, and 6 can-
not be applied to explanation for the rela-
tivistic Doppler effect. However, the formu-
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lae of the acoustic Doppler effect in Cases 1
and 2 are also applicable to the relativistic
Doppler effect under the following restric-
tions. We replace KL and KM for KO and K in
Case 1, respectively, where KO and K are the
reference system fixed to the observer and
the inertial system, respectively, and tO, xO,
x represent time and the position measured
at KO, and the position measured at K, re-
spectively. The source of light is stationary
at K. First, only the relative velocity of the
observer and the source of light, vS − vO, is
key to the relativistic Doppler effect, where
vO and vS are the velocity of the observer
and the source of light measured at the in-
ertial system, respectively. Second, v/c can
be neglected in comparison with 1, where
v expresses |vS − vO| and c is the velocity
of light. We get the Galileo transformation
equations,

xO = x − vOt

and

tO = t,

from the Lorentz transformation equations,

xO =
x − vOt√

1 − v2

c2

and

tO =
t − v

c2 x√
1 − v2

c2

.

3 Diagrams for explaining

superposition of traveling waves

Incident wave and reflected wave interfere
constructively or destructively. The condi-
tion for constructive or deconstructive inter-
ference depends on the difference of path
length. A question may arise: How is the
difference of path length related to the phase
difference of incident and reflected waves ?
Suppose the amplitude of a sinusoidal wave
traveling to the right along the x-axis is

Ψi(x, t) = A sin(ωt − kx), (11)

where A is the peak amplitude, ω is the an-
gular frequency, and k is the wavenumber
of the wave. When the wave of the same
frequency and amplitude is reflected from
a wall at the position x, the reflected wave
is traveling to the left and thus can be ex-
pressed as

Ψr(x, t) = A sin(ωt + kx + δ), (12)

where δ is the phase shift determined by
a boundary condition. Using the trigono-
metric identity for the sum of two sines, we
can obtain the representation of the super-
position of the two waves, in which the fre-
quency is original but the amplitude is pro-
portional to the cosine of kx + δ/2. There-
fore constructive or deconstructive interfer-
ence depends on the phase difference be-
tween the two waves regardless of ωt.

Description using equations does not
necessarily help students without the pre-
liminary knowledge of the trigonometric
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identities derive cos(kx + δ/2). Diagrams
representing the phase of waves are effec-
tive to the derivation of the sum of two
sines. According to the idea of proofs with-
out words [5], the sum-to-product identities
of the trigonometric function can be realized
by the relation between the phase of the two
waves on the basis of elementary geometry.
The phase functions of the incident and re-
flected waves are

φi = ωt − kx (13)

and

φr = ωt + kx + δ, (14)

respectively. Figures 7 and 8 can be drawn
in the same way as Figures 1, 3, and 5. The

radius of the circle in these figures is A. In
Figure 9, the projections of the vectors,

−→
OI

and
−→
OR to the vertical axis represent the am-

plitude of the incident and reflected waves,
respectively. Thus, the projection, ON, of
the vector,

−→
OM, is half the amplitude of the

sum of these waves, because M is the mid-
dle point of the line segment, IR. From the
geometric relations,

ON = OM sin
(

φr + φi

2

)
and

OM = OI cos
(

φr − φi

2

)
,

we obtain the desired identity

A sin φi + A sin φr = 2A cos
(

φr − φi

2

)
sin

(
φr + φi

2

)
, (15)

where (φr − φi)/2 is kx + δ/2 and (φr + φi)/2 is ωt + δ/2.

4 Concluding remarks

The essence of relative motion is how each
observer in a different reference system ex-
periences the same phenomenon. On the
subject of relative motion, description us-
ing equations is difficult for students to re-
alize intuitively. As shown in the previ-
ous study [6], visual aid using diagrams
is effective to understanding relative circu-
lar motion in a two-body system. Even
though subjects are phenomenon caused by

relative motion along a straight line, the
mechanism of the acoustic Doppler effect is
not necessarily easy for students to under-
stand using intuition. Diagrams represent-
ing the phase of the sound wave indicate the
physical meaning of the invariance of the
phase across the coordinate reference sys-
tems at the same time. Figures 1, 3, and 5
show clearly the Galileo transformation, the
sound velocity relative to the listener and
to the source, and the invariance of wave-
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ω t
− k x

ϕ i

amplitude of incident wave

Figure 7. Phase of the incident wave.

ω t

 k xδ

ϕ r

amplitude of reflected wave

Figure 8. Phase of the reflected wave.

length of the sound wave. The superposi-
tion of two traveling waves is determined by

the sum and difference between the phase
angle of these waves. To understand con-
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ϕi

ϕ r

O

I

R

M

(ϕ − ϕ ) / 2

ϕiϕr+( )/ 2N

r i

Figure 9. Relation between the phase of the incident and reflected waves.

structive or deconstructive interference, Fig-
ures 7, 8, and 9 are instructive diagrams with
the aid of elementary geometry. Thus, pre-
liminary knowledge of addition theorems
of circular functions is not necessary. The
present approach is a pedagogical appli-
cation of elementary mathematics to fun-
damental physics from the viewpoint of a
cross-curricular study of mathematics edu-
cation and physics education.
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Abstract

In this article, we examine the possibility of
interstellar travel to reach some exoplanet
orbiting around a star, beyond our Solar
system. Such travels have been in the
realm of science fiction for long. However,
in the last 50 years or so, this question
has gained further impetus in the mind of a
man on the street, after the interplanetary
travel has become a reality. Of course,
the distances we shall encounter for travel
to even some of the nearest stars outside
the Solar system could be millions of time
larger than those till now covered, to reach
our celestial neighbours within the Solar
system. Consequently, the time and energy
requirements for such a travel could be
immensely prohibitive. The questions we
want to explore here are: What could be
the possible limitations, if any, for such

interstellar travels, and could humans ever
undertake such a voyage, with hopefully a
positive outcome? What could be a possible
scenario for such an adventure in a near
or even distant future? And what could be
the reality of UFOs – Unidentified Flying
Objects – that get reported in the media
from time to time?

1 Introduction

In the last three decades many thousands of
exoplanets, planets that orbit around stars
beyond our Solar system, have been dis-
covered. Many of them are in the habit-
able zone, possibly with some forms of life
evolved on a fraction of them, and hope-
fully, the existence of intelligent life on some
of them. Can we ever get in physical contact
with the extra-terrestrials, assuming they
are there? Radio communication over inter-
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stellar distances is one possibility [1]. What
about the possibility of humans ever visiting
“them”? Or an even more pertinent ques-
tion first – Is an interstellar space travel to
an exoplanet around a star beyond our So-
lar system possible?

In last 50-60 years, the mankind, first
time in its history, has not only ventured
into outer space, humans have successfully
stepped on the Moon, the first time ever on
another celestial body. Rover explorations
of the surface of Mars have been made
many times, probes have landed on Venus,
and many other missions have been sent to
other planets. The Galileo spacecraft that
entered orbit around Jupiter, made a num-
ber of close flybys to study Jupiter’s satel-
lite Ganymede. In the Cassini-Huygens mis-
sion, while Cassini orbited Saturn and stud-
ies its rings before it plunged into Saturns at-
mosphere, the Huygens probe successfully
landed on Saturn’s moon Titan.

In recent years, India too has sent two
missions, Chandrayan-1 and Chandrayan-
2, to the Moon, and Mars Orbiter Mission
(MOM), India’s first interplanetary mission,
has successfully reached Mars. A third mis-
sion to the Moon is now being planned, and
other interplanetary missions are in the off-
ing. Perhaps in a decade or so, India may
also achieve a human landing on the the
Moon. After that one could imagine such
manned trips to Mars. Other countries are
also planning such expeditions in near fu-
ture. As for the Jovian planets like Jupiter
or Saturn, manned missions if any, will have

to have bases on one of their satellites, e.g.
Ganymede or Titan, as the planets them-
selves are all gaseous, lacking a solid surface
to make a landing.

This begs a question: Could man possi-
bly ever travel to distant stars to visit some
exoplanets, perhaps in a habitable zone,
to possibly encounter some extraterrestrial
life? After all, a mere century back, a trip to
the Moon, culminating in a human landing
on it, looked as much impossible and such
accounts in science fiction seemed to be just
a fig of imagination, as an interstellar travel
to an exoplanet may appear now. Such
analogies though may have their own jus-
tification grounds, but the fact remains that
the distances involved in interstellar travel
are immensely larger. The nearest star out-
side the solar system (Proxima Centauri) is
as many times (∼ a hundred million times)
farther than the Moon, as the latter is com-
pared to distance between adjacent rooms
((∼ 4 m) in a building. From a simple logic
one could then expect that going to a star
will at least be as much more difficult than
going to the Moon as the going-to-the-Moon
was with respect to a walk just next door
within an office building. Of course, the
shortness of human lifetime makes things
all the more difficult. With the maximum
speeds achieved so far by the spaceships
within the solar system, it will require about
80,000 years on a one-way journey to this
nearest star. Thus it may not look possi-
ble to reach other stars within a human life-
time, although on a theoretical basis theory
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of relativity could allow one to do so. For
instance, a spaceship accelerating continu-
ously with a convenient value of g, that is
the acceleration that we are used to on the
surface of the Earth, could travel to the most
distant parts of the universe within a human
lifetime, without violating the speed-limit of
c, the speed of light. In principle, interstellar
travel may thus appear possible.

However, energies involved in such an
endeavour would make it next to impossi-
ble. In a spaceship the fuel needed for the
later parts of the journey has to be carried
aboard and thus also needs to be acceler-
ated till it is utilized. Therefore the initial
mass at the start of such a voyage is expo-
nentially larger than the final payload. With
conventional chemical fuel such an arduous
journey will need a fuel-mass of a whole
galaxy. Even within the best possible sce-
nario, where almost 100% of mass is con-
verted into energy (in a typical thermonu-
clear reaction only about 0.7% of mass is
converted into energy), one would require
initial mass to be millions of times the mass
of the final payload and the energy required
may be worth hundreds of years of total en-
ergy consumption of the whole world. If
we imagine that the energy is beamed from
power plants on the Earth to the spaceship,
it will again require many hundred million
megawatts of power throughout the dura-
tion of such a trip, which might last for a
very long time. It therefore looks that at
most we might travel to other planets within
our solar system but the distant stars will

ever remain within the realm of a distant
dream only.

In this article, we ignore the techni-
cal aspects of the mission as technology
is bound to improve rapidly over time.
Further, we assume 100% efficiency of the
rocket engine in converting fuel energy into
kinetic energy of the exhaust, something
that might not really be possible. We carry
forth the possibility of our endeavour with-
out delving into many other equally im-
portant issues such as the long term effects
of cosmic radiation on the health of space
travellers and their requirements for food,
medical and other life-sustaining needs. We
consider mainly the minimum basics of the
travel, which are distance, time and energy.

2 The story so far

Till date there have been five spacecrafts that
have crossed the threshold of escape veloc-
ity from the solar system and four of them
are already headed towards the interstellar
space.

Pioneer 10 was launched in 1972, flew
past Jupiter in 1973 and became the first
spacecraft to achieve escape velocity from
the solar system. The contact was lost in
January 2003 and is heading in the direc-
tion of Aldebaran in Taurus. Pioneer 11 was
launched in 1973, flew past Jupiter in 1974
and Saturn in 1979. The contact was lost in
November 1995. The spacecraft is headed
toward the constellation of Aquila.

Pioneer 10, as well as Pioneer 11, carry
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Figure 1: The message, featuring human
figures along with several coded-symbols
inscribed on the gold-anodized aluminium
plaques, carried aboard Pioneer and Voy-
ager spacecrafts.

gold-anodized aluminium plaques in case
either spacecraft is ever found by intelli-
gent life-forms from another planetary sys-
tem. The plaques feature the human fig-
ures along with several coded-symbols that
are designed to provide information about
the origin of the spacecraft, and the message
may hopefully survive for hundreds of mil-
lions of years during its long travel through
the interstellar space. It is, thus, the artefact
of mankind with the longest expected life-
time [2].

The content of the message should be
clear to an advanced extraterrestrial civiliza-
tion, which will have, of course, the entire
Pioneer 10 spacecraft itself at its disposal
to examine as well. But being the product
of billions of years of independent biologi-
cal evolution, they may not at all resemble
humans, nor may the perspective and line-
drawing conventions be the same there as

here. The human beings will perhaps be the
most mysterious part of the whole message
for them [2].

Voyager 1 was launched in September
1977, flew past Jupiter and Saturn, made a
close approach to Saturn’s moon Titan and is
now at a distance of about 145 astronomical
unit (au), where one au (=1.5× 108 km) is the
average distance of the Earth from the Sun.
Voyager 2 was launched in August 1977,
flew past Jupiter, Saturn, Uranus, Neptune
and is now at a distance of about 125 au.
Both probes are already past heliopause, the
region where the solar wind interacts with
the interstellar medium at distances around
120 au from the Sun. Voyagers are thus
presently exploring the boundary between
the Sun’s influence and interstellar space,
where nothing from the Earth has flown be-
fore, and are expected to return valuable
data, hopefully, for another decade. Since
the Pioneers were launched first, they had a
head start on the Voyagers, but because they
were travelling slower they were eventually
overtaken by Voyagers.

New Horizons, launched in 2006, made
a flyby of Jupiter in 2007, and then in 2015 it
made a flyby of Pluto, where it flew 12,500
km above the surface of Pluto, making it the
first spacecraft to explore this dwarf planet.
After that, New Horizons made a flyby of
Kuiper belt object 486958 Arrokoth, at ∼
43 au from the Sun. New Horizons was
launched with the largest-ever launch speed
for a man-made object. It will, however,
slow down to an escape velocity of only 2.5
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au per year as it moves away from the Sun,
and it will never overtake the Voyagers.

2.1 The Pale Blue Dot

The pale blue dot is a photograph of planet
Earth taken in 1990 by the Voyager 1 space-
craft when the spacecraft reached∼ 6 billion
km, or about 40 au (the distance of Pluto),
from the Sun. This is an actual photograph
(Fig. 2) of the Earth, taken from the farthest
distance till now, and it appears as a tiny
pale blue dot against the background of an
apparent void (the faint brown band is due
to the reflection of sunlight from camera op-
tics). This picture is very significant as a per-
spective on our place in the cosmos as our
blue planet literally pales into insignificance
within the larger scheme of things. And this
is the only actual image of the Earth ever
seen by anybody from such a vantage point.
It is both a chastening and humbling real-
ization for us humans that our huge planet
is such a tiny speck of dust seen from the
distance of an outpost (Pluto!) of our plan-
etary system. If it could be photographed
from near our nearest star [Proxima Cen-
tauri], its diameter will appear about 7000
times smaller and it would be still fainter in
brilliance by a factor of 50 million (with the
flux-density falling as a square of distance),
and that the Earth may not even qualify to
be called “a tiny speck of dust” from our just
next-door neighbour star.

As Carl Sagan writes [3] “The Earth is
a very small stage in a vast cosmic arena.
Think of the rivers of blood spilled by all

Figure 2: A panoramic (!) view of our Earth,
that appears as a pale bluish dot in the centre
of the image. The faint brown band across
the image is due to the reflection of sunlight
from camera optics.

those generals and emperors so that in glory
and triumph they could become the mo-
mentary masters of a fraction of a dot. Think
of the endless cruelties visited by the in-
habitants of one corner of this pixel on the
scarcely distinguishable inhabitants of some
other corner. How frequent their misunder-
standings, how eager they are to kill one an-
other, how fervent their hatreds. Our pos-
turings, our imagined self-importance, the
delusion that we have some privileged po-
sition in the universe, are challenged by this
point of pale light. Our planet is a lonely
speck in the great enveloping cosmic dark.
In our obscurity - in all this vastness - there
is no hint that help will come from else-
where to save us from ourselves. The Earth
is the only world known, so far, to harbour
life.”
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Table 1: An idea of the cosmic distances involved

Cosmic object Distance
Moon 1.28 light seconds (384000 km)
Sun 500 light seconds (150 million km)

Proxima Centauri 4.24 light years
Orion Nebula 1300 light years

Centre of Milky-way 25,000 light years
Andromeda Galaxy 2 million light years

Size of Universe! 14 billion light years

And to think further that somewhere
on a far-off world perhaps some intelligent
being looking at this “not-even-a-speck-of-
dust” could amusedly imagine that some
two-legged creatures, populating that ut-
terly insignificant part of the universe, be-
lieve that some of their ancestors (saints, gu-
rus or prophets), confined to a minuscule
part of this tiniest of dots, had figured out
the grandest design of the whole Universe
or even of its so-called creator – and have
the audacity to claim that the creator himself
or his some messenger had appeared in the
form of these very two-legged creatures on
their own planet. It should also humble us
and put into total insignificance the occur-
rence of all our daily squabbles, aspirations,
the desire to preserve our DNA through our
children and grandchildren, political up-
heavals, love-affairs, wars between nations,
and above all it should show us the hollow-
ness of our religious beliefs – perhaps the
greatest folly of all – and our chauvinism
that we are the best of all, with an utter con-
tempt for others who may not agree with

us, and our willingness to condemn those
others or even kill and die for some totally
unfounded beliefs uttered or penned down
by someone perhaps with good intentions
but based on the limited knowledge at that
moment of time, or much worse, based on
a pure whim and fancy, thrust upon other
gullible fellow beings.

3 Cosmic distances involved

The main challenge facing interstellar travel
is the vast distances that have to be covered,
requiring very high speeds as well as long
travel times. The latter make it particularly
difficult to design manned missions.

3.1 How far can a manned mission
travel from Earth?

As one cannot travel faster than light, one
might conclude that a human can never
make a round-trip farther than 20 light years
(1 light year ≈ 9.5× 1017, the distance trav-
elled by light in one year), assuming the
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traveller is active between the ages of 20 and
60. Thus one would never be able to go be-
yond a few star systems which exist within
the limit of ∼ 20 light years from the Earth.
Even if we design a spaceship that can travel
at 0.99c, where c ≈ 3 × 1010 cm/sec is the
speed of light, which, from the theory of rel-
ativity is the maximum possible speed an
object could ever attain, interstellar travel
beyond some nearest stars seems next to im-
possible.

To survive for long years on a space-
ship, it would be ideal to maintain a con-
stant acceleration, g ≈ 9.8 × 102 cm sec−2,
the acceleration due to gravity that the hu-
mans have evolved in and are accustomed
to on the Earth, with the rocket continuously
accelerating the spaceship by this amount.
Since we may want soft landings on the sur-
face of the exoplanet as well as on our re-
turn to the Earth, we divide our journey into
four separate stages. In the onward Journey
while the spaceship is moving towards the
destination, it will be accelerated in the first
half of the journey, while in the second half
it will have to be decelerated to attain an al-
most zero speed. In the same way during
the return journey, it will have to be accel-
erated in first half of the return journey and
then decelerated in the second half, for an
ultimate soft landing.

3.2 The relativity comes to the rescue –
time dilation

A constant acceleration of 1g for a year
would bring the speed of spaceship ap-

proximately close to c. Therefore relativis-
tic effects of time dilation would have to
be taken into consideration. We know that
time passes relatively slower by a relativistic
factor γ = 1/

√
1− (v/c)2 for an observer

moving with a relative speed v. Detailed cal-
culations show that by the time the space-
ship lands back on the Earth, the time t, that
would have passed on Earth, would be re-
lated to the time T, that passed on the space-
ship, as (Appendix A; also see [4])

t =
4c
g

sinh
gT
4c

, (1)

a factor of 4 in the formula appears because
of the four stages of the journey. During this
time, the maximum relative speed the space-
ship would achieve, midway of the journey,
is

v = c tanh(gT/c) (2)

The maximum distance d, of the destina-
tion that the spaceship would have arrived
at and returned from, will be given by

d =
2c2

g

[
cosh

gT
4c
− 1
]

. (3)

The destination distance D can be expressed
in terms of time t of the Earth, as

D =
2c2

g

√1 +
(

gt
4c

)2

− 1

 . (4)

It helps to remember that for g ≈ 9.8× 102

cm sec−2, time c/g = 0.97 ≈ 1 year and the
distance c2/g ≈ 1 light year. Table 2 gives
us an idea of the time dilation involved from
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Table 2: Effects of time dilation

Time on spaceship Time on Earth Distance reached
T (years) t (years) d (light years)

1 1.01 0.065
2 2.1 0.26
5 6.5 1.85
7 11.5 4.1

10 25 11
15 95 45
20 335 165
25 1,225 610
30 4,450 2,225
40 58,800 29,400
50 0.8 million 0.4 million
60 10.2 million 5.1 million
75 0.5 billion 0.25 billion
90 23.5 billion 11.75 billion

the total duration and distance reached in a
round trip, involving a constant acceleration
of 1g for the crew. A future spacecraft, using
technologies that we haven’t even dreamed
of, may use an engine that could sustain a
constant acceleration of 1g. Travelling even
at the speed of light, visiting the stellar nurs-
ery in Orion nebula would require at least
2600 years on the earth time, while a cruise
to the centre of our Milky-way galaxy will
take more than 50,000 years, and a round
trip to Andromeda, the nearest spiral galaxy,
will need at least 4 million years. But due to
the relativistic time dilation, for the traveller
the time spent could be much smaller. With
a 1g engine, a vacation trip to Andromeda

may be possible within a human lifetime!

For astronauts, while those who left in
their twenties might be still in their seven-
ties at the end of the voyage, to hope for a
family reunion on return, however, is out of
question. Back on Earth, millions of years
would have passed and entire civilizations
would have come and gone. Table 2 gives
time spent by the astronaut, travelling in a
rocket with a constant acceleration g, for the
time and distance as observed from Earth.

4 The rocket equation

If the fuel needed for the journey has to be
carried aboard it also needs to be acceler-
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ated till it is utilized. Therefore the initial
mass, Mi, at the start of the journey is much
more than M f , the final payload mass. This
is given by the rocket equation, which gives
the final reachable speed v as a function of
the exhaust speed u of gas/ion/light emis-
sion and R = Mi/M f , the ratio of the ini-
tial mass (payload + fuel) to the final mass
(only payload). From the momentum con-
servation we have

M
dv
dt

= −dM
dt

u,

We can integrate it∫ v

0
dv = −u

∫ M f

Mi

dM
M

,

which gives
v
u
= lnR.

or
R = exp(v/u). (5)

The exponential makes the required mass
ratio increase very fast with v/u.
For example,
R = 1 , for v = 2.3u,
but
R = 1010 , for v = 23u. Thus, to obtain a
final speed, v close to c, it is necessary for
u to be of the order of c as well, otherwise
the required mass ratio will be prohibitively
large.

If the motion is with a constant acceler-
ation g, then v = gt and we get

R = exp(gt/u). (6)

In a relativistic case, the rocket equation
becomes (see Appendix B)

v
c
=

1−R−2u/c

1 +R−2u/c .

For the mass ratioR, we then get

R =

[
(1 + v

c )

(1− v
c )

]c/2u

,

or
R =

[
γ
(

1 +
v
c

)]c/u
. (7)

For v � u ≤ c, Equation (7) reduces to the
familiar non-relativistic, Equation (5).

In the case of a constant proper accel-
eration g, a trip planned for a travel time T
of the crew, using a rocket with an exhaust
speed u, would require

R = exp(gT/u). (8)

In a non-relativistic case, T = t, and the
Equation (8) becomes Equation (6).

The power of the rocket engine needed
can be calculated from the required thrust
of the rocket, which is nothing but the total
mass, Mi, of the spaceship (payload+fuel)
multiplied by its acceleration, g. The thrust
of the rocket is obtained from the exhaust
mass-flow rate times the exhaust velocity
[5]. For a non-relativistic case, the needed
power, P, of the engine thus equals the
mass-flow rate times one-half the square of
the exhaust velocity. From that we get, P =

Mi gu/2. For a relativistic exhaust speed
(u ∼ c) it becomes P = Mi gc.

If at the maximum speed so far
achieved, which is 16 km s−1 for the New
Horizons probe to Pluto, we could make a
return trip to the Moon in a little more than
half a day (ignoring the slowing down due
to the Earth’s gravity), a similar return trip
at this speed to Proxima Centauri, the star
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nearest to our solar system, will take about
160,000 years which is over 6,000 human
generations, and this is of the order of time
that has passed since the homo sapiens (hu-
mans) first appeared on the scene. One can
thus conclude that in order to reach these
interstellar destinations, one would have to
travel much faster, in fact with speeds close
to that of light, c, which is the maximum
attainable speed for any object. Otherwise
such a trip would be unimaginable. And to
get close to c, we need alternative fuels.

5 Various rocket concepts

5.1 Chemical fuel rocket

Till now the chemical energy being used
comes from a mixture of liquid oxygen
and hydrogen, which yields 100 MJ (Mega
Joules) per kg of fuel. The highest efficiency
is achieved if the end products of the chem-
ical reactions themselves can be expelled for
propulsion with the energy produced. Then
one will get an exhaust speed of u = 14
km/s. Attaining a modest maximum fi-
nal value of one thousandth of the speed of
light, would mean ∼ 17, 000 years of travel
time for a return trip to Proxima Centauri,
at a distance of 4.24 light years. This would
itself require, due to the four stages of the
journey, an extremely high mass ratio (R ∼
(1.001)4c/u ∼ 1.6× 1037). This implies that a
ten ton payload (a minimum from any stan-
dards) will need a fuel ∼ 1.6× 1044) gm, the
mass equivalent of ∼ 100 billion suns or a
whole galaxy. Not at all a viable possibility,

considered from any angle. Perhaps nuclear
fuel might be a better option.

5.2 Nuclear fuel - fission or fusion?

Uranium yields about 6.5 × 107 MJ/kg of
energy through fission, or about a million
times better than the chemical reactions. In
this case, we could get an exhaust velocity,
12,000 km/s or u = c/25, and we could pos-
sibly attain a maximum travel speed, v =

0.1c, which implies R ∼ 12 . Considering,
however, four stages of the journey, R >

20, 000 will be needed. A round trip to the
nearest star would, however, require a min-
imum of 170 years of travel time. Relativis-
tic effects of time dilation would be insignif-
icant at such speeds.

Fusion could provide ten times more
energy per unit fuel mass. Despite the fact
that controlled reactions of fusion of lighter
nuclei have not yet been very successful, we
can imagine that the technology required
for it could be developed in the years to
come. Banking on this assumption, one
could propose the energy required for inter-
stellar travel to come from nuclear fusion.

Using fusion of lighter nuclei, an ex-
haust speed of c/8.4 may become possible
(see Appendix C), and that we could attain a
top speed of 0.3c, requiring for a return jour-
ney a mass ratio more than 32,000. At these
speeds a trip to the nearest star would re-
quire for the return journey a minimum of
60 years of total travel time, slightly more
than the average working life span of a sin-
gle generation. Of course a ten ton payload
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will mean more than 320,000 tons of hydro-
gen to be carried aboard and to be converted
into helium and propelled behind during
the journey. This will be∼ 2× 1017 MJ of en-
ergy, which is around 400 years worth of to-
tal energy consumption (5× 1014 MJ for the
year 2018) of the whole world!

The examples discussed so far were for
accelerations much lower than g, the accel-
eration due to gravity on the Earth, an ideal
value for journeys made by humans for long
durations. In fact, an acceleration of 1g
could make it possible to attain much higher
speeds for the spaceship and thus substan-
tially cut down the travel time. However, as
we will show later, the mass ratio, R, then
snowballs to extremely high values, making
even the nuclear fusion energy as a mode
of locomotion for journey to other stars, not
very promising. Thus a vision of interstel-
lar space travel will be highly unrealistic,
if we were to depend only on these energy
sources.

5.3 Antimatter rockets

An antimatter rocket would have a far
higher energy density and specific impulse,
i.e. total impulse (or change in momentum)
delivered per unit of propellant mass, than
any other proposed class of rocket. When
matter and anti-matter is made to fuse, the
entire mass gets converted to radiation, but
the technology supporting such a mode of
energy production, would require matter
and anti-matter to be stored at a safe dis-
tance from each other and to be able to com-

bine them, a proper amount, at a proper
time in order to be able to use the energy
which is produced due to annihilation.

The problem, however, is that all of the
current methods of manufacturing antimat-
ter require enormous particle accelerators
and produce antimatter in very small quan-
tities, and to store antimatter, if we need
a ton of magnets for one gram of antimat-
ter, the entire idea of a lightweight way to
store and carry immense amounts of energy
remains no longer meaningful. Antimatter
could nevertheless perhaps find use in in-
terstellar spaceships as a way to help trigger
nuclear reactions.

6 Non-rocket concepts

6.1 A scoop on the way

In a fusion rocket a huge scoop could col-
lect diffuse hydrogen from the interstellar
space and burn it on flight, using proton-
proton fusion reaction and expel the fusion
product to get the thrust. The idea is attrac-
tive as the fuel would be collected en route,
but all attempts to design some kind of a
scoop has the unfortunate effect of produc-
ing more drag than you get back thrust.

6.2 Sailing away

Solar sails are a form of spacecraft propul-
sion using the solar pressure, of a combi-
nation of photons and solar wind from the
Sun, to push large ultra-thin mirrors to high
speeds. Comets tails are pushed away from
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the Sun by the same mechanism.

The momentum of a photon or an en-
tire flux is given by p = E/c, where E is
the photon or flux energy, p is the momen-
tum. At 1 au the flux density of solar ra-
diation is 1.36 kW/m2, resulting in a pres-
sure of ∼ 4.5µPa. A perfectly reflecting sail
with 1-sq. km area could thus yield a force
∼ 9 N, while the Sun’s gravitational force on
one ton mass there is about 6 N. As both the
radiation pressure and the gravity fall with
the square of distance from the Sun, a 1-ton
load attached to a sail of 1-sq. km area could
get pushed outward by the radiation pres-
sure and thus escape the solar system.

Solar wind on the other hand exerts
only a nominal dynamic pressure of about 3
to 4 nPa, three orders of magnitude less than
solar radiation pressure on a reflective sail,
and would not relatively have much effect.

A physically realistic approach would
be to use the light from the Sun to acceler-
ate. The ship would begin its trip away from
the system using the light from the Sun to
keep accelerating. Beyond some distance,
the ship would no longer receive enough
light to accelerate it significantly, but would
maintain its course due to inertia. When
nearing the target star, the ship could turn its
sails toward it and begin to decelerate. Ad-
ditional forward and reverse thrust could be
achieved with more conventional means of
propulsion such as rockets.

6.3 Laser sails or particle beams

Laser sails might be another way to go.
Instead of relying just on the enormous
amount of light given off by the Sun, laser
sails to Proxima Centauri could also ride
laser beams that the earthlings would fire
carefully at those ships to give an extra
boost, especially when sails were too far
away to catch much light from our Sun. The
problem with laser sails is that a lot of light
needs to be used for a long time to get fast
enough to get to Proxima Centauri within a
human lifetime. This means very powerful
and extraordinarily large lasers are needed
in order to focus on sails that get farther and
farther away.

An idea similar to light sails could be
firing a particle beam at a spaceship that
would ride that energy. The problem with
laser beams is that they disperse over dis-
tance, so we could use particle beams. The
beam would have to have a neutral electrical
charge so as not to disperse itself over time.

6.4 Bombs!

Another idea for space travel would in-
volve riding explosions through space. Such
”pulsed propulsion” would hurl bombs be-
hind a ship, which is shielded with a giant
plate. The explosions would push against
the plate, propelling the ship. Nuclear
pulsed propulsion works best for really big
systems. If we want to send a colony of 1,000
people to space, this might be the way to do
it.
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7 Some other fanciful ideas

7.1 Interstellar travel by transmission

If physical entities could be decomposed as
“information”, then transmitted and then
reconstructed at a destination, travel at
nearly the speed of light would be possi-
ble, which for the “travellers” would be in-
stantaneous. However, sending an atom-
by-atom description of (say) a human body
would be a daunting task. Extracting and
sending only a computer brain simulation is
a significant part of that problem. “Journey”
time would be the light-travel time plus the
time needed to encode, send and reconstruct
the whole transmission.

7.2 Generation-ships

A generation-ship is a kind of interstellar
ark in which crew that arrive at the desti-
nation are descendants of those who started
the journey. Generation ships are not cur-
rently feasible, because of the difficulty of
constructing a ship of the enormous re-
quired scale, and the great biological and so-
ciological problems that life aboard such a
ship raises.

7.3 Suspended animation

Scientists and writers have postulated var-
ious techniques for suspended animation.
These include human hibernation and cry-
onic preservation. While neither is cur-
rently practical, they offer the possibility of
sleeper ships in which the passengers lie in-

ert for the long years of the voyage, hope-
fully without many after-effects.

8 Other difficulties of interstellar
travel

8.1 Ex-communication!

The round-trip delay time is the minimum
time taken for to-and-fro communication be-
tween the probe and the Earth. For Prox-
ima Centauri this time would be 8.5 years.
Of course, in the case of a manned flight
the crew can respond immediately to their
emergencies. However, the round-trip delay
time makes them not only extremely distant
from but, in terms of communication, also
extremely isolated from the Earth. In fact
the communication issue could become the
biggest problem. How will the people born
in an interstellar colony identify themselves
with no attachment to the Earth? Will they
not feel literally excommunicated from the
Earth?

8.2 Hard-hitting interstellar medium

A major issue with traveling at extremely
high speeds is that interstellar dust and gas
may cause considerable damage to the craft,
due to the high relative speeds and large
kinetic energies involved. A robust shield-
ing method to mitigate this problem would
be needed. Larger objects (such as macro-
scopic dust grains) are far less common, but
would be much more destructive. The risks
of impacting such objects, and methods of
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mitigating these risks, will have to be ade-
quately addressed.

8.3 Manned missions

The mass of any craft capable of carry-
ing humans would inevitably be substan-
tially larger than that necessary for an un-
manned interstellar probe. The require-
ments for food, water, medical and other
life-sustaining needs of the crew will liter-
ally put huge burden on the mission. In
the case of interstellar missions, given the
vastly greater travel times involved, there
will thus be the necessity of a closed-cycle
life support system, which would last over
decades. In generation ships, will there be
a large enough gene pool for healthy future
generations? There will be the ethical ques-
tions – Should a new-born be condemned to
a life-time of journey in which he or she may
have no choice whatsoever. Then there is the
possibility that the new generations aboard
might change their mind and abandon the
mission or go elsewhere, keeping no contact
with the Earth.

9 A hypothetical journey!

Let us make a hypothetical journey to Prox-
ima Centauri, the star closest to the Solar
system, at a distance of 4.24 light years. For
this we expand on a scenario created by Pur-
cell [1], with the crew always under an accel-
eration of 1g, the acceleration due to gravity,
so that the they “feel at home”. From Equa-
tion (4) we find that the return trip will take

a total of 12 years of the earth time, with the
top speed (Equation (2)) reaching 0.95c mid-
way point of the journey. However, from
Equation (3), the traveller would age only by
about 7 years. We already saw that a chem-
ical fuel cannot provide enough thrust as it
does not give rise to large enough exhaust
speed. So let us try nuclear fusion of hy-
drogen into helium, for which the best pos-
sible exhaust speed is u = c/8.4 (see Ap-
pendix C). Then assuming a 100% efficiency,
the relativistic rocket equation (5) yields a
mass ratio R ∼ 4.7 × 106 to reach a maxi-
mum speed 0.95c. However, if we consider
the deceleration and the return journey as
well, the scenario becomes impossible as the
mass ratio for the nuclear fusion case swells
to R ∼ (4.7 × 106)4 ≈ 5 × 1026. So for a
10 ton payload, we will need a fuel mass of
∼ 5 × 1033 gm, that is, equivalent to more
than two suns. Thus one will have to tug
along fuel mass equivalent to two suns or
more, in order to accomplish a return trip
to the nearest star beyond the Solar system.
The fuel requirement could be reduced sub-
stantially if we are able to somehow achieve
nuclear fusion of hydrogen into iron, the ul-
timate stage in the nuclear fusion, where the
maimum exhaust speed becomes u = c/7.4
(Appendix C). In that case the fuel needed
for a return journey to Proxima Centauri,
with a 10 ton payload, reduces to∼ 3× 1030,
equivalent to the mass of ∼ 500 earths. Still
an impossible amount of fuel.

Though recently an earth-size planet
has been found orbiting around α-Centauri
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B, but it seems too close to the parent star
and would be very hot and perhaps not hab-
itable. It is estimated that to visit a habit-
able planet and hopefully encounter some
extraterrestrial life, we may have to probe
stars up to about 12 light years. For in-
stance, Ross 128 b, a confirmed Earth-sized
exoplanet, orbiting within the inner habit-
able zone of the red dwarf Ross 128, lies
at a distance of about 11 light years from
the Earth. Another exoplanet, Luyten b, or-
biting within the habitable zone of the red
dwarf Luyten’s Star, is at a distance of 12.2
light years from our Solar system. With this
in mind, let us make a hypothetical return
trip to an exoplanet, say, at a distance of 12
light years. From Equation (4) we find that
the return trip will take a total of 28 years of
the earth time, with the top speed (Equation
(2)) reaching 0.99c midway point of the jour-
ney. However, from Equation (3), the trav-
eller would age only by about 10 years. For
the best possible exhaust speed is u = c/7.4,
to reach 0.99c, the mass ratio for the nuclear
fusion case swells to R ∼ 2× 1034. So for a
10 ton payload we will need a fuel mass of
∼ 2× 1041 gm, that is, equivalent to ∼ 100
million suns. This would imply consum-
ing, throughout the journey of 10 years on
board, on the average, fuel mass about one
third of the sun every second. This means
the energy that the Sun produces during its
life time of ∼ 1010 years, would be con-
sumed every three seconds to accelerate the
spaceship. In fact the fuel consumption will
be orders of magnitude higher in the initial

stages, being at a rate Mi g/u, that is ∼ 25
suns per second. A scenario not imaginable
even in the wildest of our fantasies.

Thus forgetting the chemical fuel, even
the nuclear fusion could not be the source
of energy for interstellar travel. And that
too when we restricted travels to only a few
light years within the reach of the Solar Sys-
tem. It is quite clear that, one would need an
exhaust speed, u ≈ c and matter-antimatter
annihilation only may provide it. To reach
0.99c, the mass ratio in such a case may ap-
pear to be manageable, R = 14, at least
for one leg of the journey, which however,
snowballs to R = (14)4 = 40, 000 for the
complete journey in four stages, implying
200,000 tons of matter and antimatter each.
For the early part of the journey we will
need ∼ 1.2 × 1012 MW, about seven times
more than the radiation that the Earth re-
ceives from the Sun. But with all that in
gamma-rays, our problem will be not only
to shield the payload but also to shield the
Earth. Again, not a very promising scenario!

10 Could we? Or should we?

So far no one has created technology that is
widely agreed upon as capable of caring for
or preserving humans across the lifetimes it
might take to get to even Proxima Centauri;
it might easily take more than one lifetime to
reach any star system! If that is so, mission
designers might have to take procreation
and family into account so that offspring of
the original crew would get properly edu-
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cated and trained to manage the ship in due
course.

Thus a trip to our nearest star requires
not only ingenious methods of propulsion
and a minimum of decades en route, but
also a sophisticated system of life support
for the human crew to survive the journey.
Not only the costs and difficulties are al-
most insurmountable, but they would also
require almost unparalleled public and gov-
ernmental support. The ultimate question
then might change from – Could we to
should we?

Even if the constraints imposed by the
technology are ignored, the requirement of
energy plays a huge constraint by itself. A
huge amount of fuel would have to be put
to use for such an endeavour and many gen-
erations of earthlings would have to work
on such a project, putting all the available
resources and the work force dedicated on
something that may or may not result in a
successful outcome.

There is a very strong likelihood that
the mission would fail due to many other
factors. We have ignored the requisites of
food and water and other medicinal require-
ments for the crew. There is also the ef-
fect of the harmful radiation such as cosmic
rays and impacts with other larger bodies.
What if some deadly disease strikes? It is
unlikely that living beings will be able to
survive such ordeals for time periods of the
order of decades.

Further we have not even considered
the time and resources needed for possible

research and conduction of experiments at
the place of the destination, without which
such a trip would not be of much advantage
to us, anyway.

11 Conclusions

Taking these severe limitations into account,
we can conclude that space travel, even in
the most distant future, will remain confined
to our own planetary system, and a similar
conclusion will hold forth for any other civ-
ilization, no matter how advanced it might
be, unless those extraterrestrial species have
life spans order of magnitude longer than
ours. Even in such a case it is unlikely that
they will travel much farther than their im-
mediate stellar neighbourhood, as each such
excursion will exhaust the resources of their
home planet so much that those will dwin-
dle rather fast and there might not be much
left for the further scientific and technolog-
ical advancements. So the science-fiction
fancy of a Galactic Empire may ever remain
in our fantasies only. And as for the mythi-
cal UFOs, whose quiet appearances do get
reported in the press once in a while, re-
cent explorations have shown no evidence
that any such thing could have an origina-
tion within our own solar system itself, a
“quiet” return trip from a distant star is al-
most impossible as it could not be so quiet as
the exhaust in any such trip will dazzle the
sky like many suns or perhaps more like a
gamma ray burst occurring, but not in a dis-
tant part of the universe, instead going off
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right in our own solar backyard.

Appendix A: The distance-time
relation for an accelerated motion
with relativistic speeds

We can compute time T of a spaceship trav-
eller, undergoing a proper acceleration g to
achieve relativistic speeds, in terms of the
time t and distance x, as measured by a set
of observers stationary with respect to the
launching station. We assume it to be a 1-
dimensional motion, say, along the x-axis,
taking x = 0 and t = 0 at the start of the
journey at T = 0. From relativistic transfor-
mations, we have the time dilation formula,
dt = γ dT, while for the longitudinal accel-
eration we have, dv/dt = g γ−3 [4]. The
equation of motion then is

γ3dv = g dt = gγ dT.

We can integrate it∫ v

0

dv
1− (v/c)2 =

∫ T

0
g dT.

For a constant g, we then get

v
c
= tanh(gT/c),

which gives γ = cosh(gT/c).
From this we can get a relation between

t and T as∫ t

0
dt =

∫ T

0
γ dT =

∫ T

0
cosh

gT
c

dT,

or

t =
c
g

sinh
gT
c

.

The distance covered is∫ x

0
dx =

∫ t

0
v dt = c

∫ T

0
sinh

gT
c

dT,

or

x =
c2

g

[
cosh

gT
c
− 1
]

.

Distance x can be expressed in terms of t as

x =
c2

g

√1 +
(

gt
c

)2

− 1

 .

Appendix B: The relativistic
rocket equation

If in the instantaneous rest frame of the
rocket, a fuel mass ∆m is consumed dur-
ing a proper time ∆T, to generate energy
that causes the expulsion of the propellent
with an exhaust speed u, with a correspond-
ing Lorentz factor γu = 1/

√
1− (u/c)2,

from the energy conservation we have,
γu∆m′c2 = ∆mc2, where ∆m′ is the mass in
the expelled fuel’s rest frame. The expelled
mass carries a momentum, γu∆m′u = ∆mu
and from momentum conservation, we get

Mg = −dM
dT

u,

Using dT = dt/γ and g = γ3 dv/dt from
Appendix A, we get

Mγ2 dv
dt

= −dM
dt

u,

or
dv

1− (v/c)2 = −dM
M

u.
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We can integrate it∫ v

0

dv
1− (v/c)2 = −u

∫ M f

Mi

dM
M

,

to get

tanh−1 v
c
=

u
c

lnR,

which can be written as

v
c
= tanh[lnRu/c] =

Ru/c −R−u/c

Ru/c +R−u/c .

The relativistic rocket equation then is

v
c
=

1−R−2u/c

1 +R−2u/c ,

or

R =

[
(1 + v

c )

(1− v
c )

]c/2u

=
[
γ
(

1 +
v
c

)]c/u
.

For a constant proper acceleration g, we sub-
stitute for v and γ from Appendix A, to get

R = [cosh(gT/c) + sinh(gT/c)]c/u

= exp(gT/u).

Appendix C: The exhaust velocity
limit for a nuclear fusion rocket

In a nuclear fusion reaction of hydrogen into
helium, an amount ε = 0.71% of the fuel
mass gets converted into energy, while for
a conversion from hydrogen to iron, the ulti-
mate stage in the nuclear fusion, the amount
is ε = 0.92%.

The energy released by this amount
could be converted into the kinetic energy

[(γu − 1)∆m′c2] of the expelled fuel mass,
giving

(γu − 1)∆m′c2 = ε∆mc2.

Using γu∆m′ = ∆m (Appendix B), we get

(1−
√

1− (u/c)2) = ε.

This yields for a nuclear fusion rocket, the
best possible values for the exhaust speed,
u = c/8.4 , for ε = 0.71%
and
u = c/7.4 , for ε = 0.92%.
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