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EDITORIAL 

 

  

 We are at the threshold of one more Nobel 

prize announcement. This year, the prize has been 

shared by Prof. James Peebles of Princeton 

University, Prof. Michel Mayor of the University 

of Geneva, Switzerland and Prof. Didier Queloz of 

University of Geneva and Cambridge. This was a 

reward for their work cosmology and exoplanets. 

 

 As the name suggests, exoplanets are 

planets orbiting sun-like stars outside our solar 

system. First of such exoplanets were discovered 

in 1992 and by the year 2019 more than 4000 

exoplanets are known to exist. A related interest of 

crucial importance here is the possibility of 

extraterrestrial life in these planets. At this point, it 

is worth recollecting that advances in technology 

based on advances in the science of spectroscopy 

led to these discoveries. This is another example 

of how scientific research leads to technological 

developments, which feed into newer discoveries 

in sciences.  

  

 Interestingly, this year's Nobel prize in 

chemistry has been awarded to three people whose 

work has visibly touched our lives. Professors 

John Goodenough, Stanley Whittingham and 

Akira Yoshino have been awarded the chemistry 

prize for their work that led to development of 

Lithium-Ion batteries. The ones what we routinely 

use in our cell phones and other devices. Clearly, 

this is an area that has both physics and chemistry 

to it. Increasingly, the emerging technologies 

cannot be slotted as physics or chemistry or for 

that matter any one area of science. 

Interdisciplinarity is important. Even as we need 

depth in our own areas, we need to keep our 

senses to open to influences from other areas. 
 

Let me take this opportunity to wish you the best 

during this festival season.  
  

    

 

 

M. S. Santhanam 

Chief Editor 

Physics Education    

           

 

_______________________________________________________________________________________________   
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Abstract 
This study focuses on the links between 
concepts in physics and the mathematical 
formalisms that translate them. A physics 
concept ought to be explored from an 
epistemological disciplinary perspective, one 
that shouldn’t be confused with the 
formalization process that aims at translating it. 
The notion of divergence of a vector field can be 
used to highlight the confusions that might exist 
between concept and formalization. Using an 
internet survey, an important proportion of 
French professors of higher education were 
asked to give the definition of the divergence of 
a vector field. 80% of the answers defined that 
term as the sum of the partial derivatives of the 
components of the field in relation to the 
corresponding coordinates. The paper shows 
how Maxwell and Heaviside have clarified this 
concept and how they have shown that an 
intrinsic definition based on vector analysis 
leads to the correct articulation between former 
concepts and new ones. By defining  
 
 

 
 
divergence as the limit of the electric flux per 
unit volume through a closed surface when the 
volume tends towards zero, the introduced 
concept takes root in previous knowledge 
whose limits were highlighted; it helps in 
pursuing the initial reflection and hence in 
making more sense. The poll showed 
surprisingly that this definition rarely appears. 
This article shows that much work on Science 
teaching combined with History of Science may 
improve teaching efficiency despite the great 
amount of results that the discipline has already 
achieved.  
 
 

1. Introduction 
The ties between physics and mathematics, its 

main writing system, has been an important 

research issue for a long time, at the level of high 

school as well as for introductory physics in 

higher education and also in upper levels.  

Bagno, Berger and Eylon [1] have described 

student’s attitude towards the activity focused on  
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the interpretation of formulae. Bing and Redish 

[2] have analyzed how intermediate level students 

connect mathematical skills with physical 

concepts and situations and propose a 

classification of the so-called “warrants” that is 

capable of identifying student’s epistemological 

framings. Bollen, Van Kampen and De Cock [3] 

have shown that if students are quite skilled at 

doing calculations in the field of electrodynamics, 

they struggle with interpreting graphical 

representations of vector fields and applying 

vector calculus to physical situations. As they 

write, “We have found strong indications that 

traditional instruction is not sufficient for our 

students to fully understand the meaning and 

power of Maxwell’s equations in 

electrodynamics”. Chasteen, Pollock, Pepper and 

Perkins [4] have shown that using student-

centered methods at the upper-division may 

improve outcomes. Hudson [5] has shown that 

though good mathematical skills are not a 

guarantee of success in physics, the performance 

in the physics will be poor unless the student 

reaches good mathematical skills. Karam [6] has 

investigated the subtle structural role of 

mathematics in physics teaching. A couple of 

studies have shown the inherent difficulties 

associated at the concept of electric and magnetic 

field like for instance Guisasola, Almudí, Salinas, 

Zuza and Ceberio [7], Guisasola, Zuza and 

Almudi [8] or Kesonen, Asikainen and Hirvonen 

[9]. Among other results and papers, one may 

note that there is often some confusions in the 

student’s mind between the physics concepts and 

their mathematical formulations (Yeatts, [10], 

Pepper, Chasteen, Pollock & Perkins, [11]). 

McMillan and Swadener, [12] have shown in the 

context of electrostatics, that though students may 

calculate properly, they exhibit major 

misconceptions about the problem situation. 

Savelsbergh, De Jong and Ferguson-Hessler [13] 

show also in the context of electromagnetism that 

expertise, the so-called situational knowledge, 

comes along with time and experience and though 

teaching is also the art of accelerating the process, 

teachers have to remain modest in what they can 

expect from their students. Last but not least, 

Kuo, Hull, Gupta and Elby [14] have shown that 

once the difficulties are overcome and once 

students have developed their own mental 

representation of how maths and physics are 

bound together, they obtain good results in 

problem solving. 

The French tendency to over-represent 

mathematical formalisms in the teaching of 

physics has already been highlighted. In a 

previous article, the Authors of the present article, 

[15] showed that the didactic contract between 

students and teachers implicitly lies on the 

symbolic manipulation of formulae which are, 

however, emptied of their meaning. In that 

previous article, the authors showed that the 

students respond to a question in physics using a 

mathematical formula – formula that is often 

wrong and sometimes even absurd. The physical 

significance of the concept which is at the core of 

the question being asked, is clearly altered. That 

same article also showed that this didactic 

contract is probably correlated to the proportion 

of French writings in physics used, which makes 

one think that the epistemology of physics is 

intimately related to the symbolic manipulation of 

formulae.  

In this current article, our aim is to attempt to 

show that this didactic contract also draws its 

negative strength from the confusions that exist 

between the conceptualization and the 

formalization of physics but, this time, within the 

very mind of teachers. This assertion, if proven, 

shouldn’t be too surprising to us – since teachers 

are, to a large extent, the very authors of the 

textbooks that tend to over-emphasize the 

symbolic manipulations of the terms being taught 

at the detriment of their meaning in physics.  

This article presents the results of a survey carried 

out in France using some five to six hundred 

physics higher education teachers. Before giving 

its results, we’ll present the concept of physics on 

which it focused, its mathematical formalization 

and the subtle links that can lead one to not detect 
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the hidden pedagogic agenda that could generate 

the negative effects of over-representation of 

mathematics. 

2.Theoretical background 

In order to define the concept of divergence of a 

vector field, one needs to position oneself in the 

case of the Gauss theorem for an electric field. It 

is generally in this context that students first 

encounter the concept of integral of flux of a field 

through a surface.  It might not be the best context 

in which to reflect, since there is no transport of 

matter (mass or electric charge) which would 

somehow reassure the student – who is intuitively 

used to relating the notion of flux to a 

phenomenon of transport. It would be more 

helpful to present the concept of flux of a field 

through a surface in the context of a microscopic 

model of electric current or of mechanics of 

fluids.  

Whichever way, let us first remind ourselves of 

the Gauss theorem. The flux of an electric field 

through any type of closed surface equals the total 

electric charge in the volume enclosed by this 

surface. Classically, one can write this as follows:  

 

∯ E⃗⃗ . dS⃗⃗⃗⃗ 
S

=
Qint

ε0
 (1) 

 

Expressed as an integral, the Gauss theorem deals 

with a macroscopic surface and volume in that 

one can make them as big as one wishes. 

However, this result doesn’t tell us anything 

concerning the way in which the total charge 

closed by the surface is being distributed within 

the inside volume. If one wishes to know more 

about the distribution of charges, one needs, for 

instance, to divide the volume corresponding to 

the Gauss surface by two and to apply the 

theorem on two new objects. This operation 

allows one to somehow refine the understanding 

of the distribution of charges within the initial 

volume. If one wants to refine the results further, 

one can, in absolute terms, divide the volume ad 

infinitum. One can thus define the divergence of 

the electric field as the limit of the electric flux 

per unit volume leaving the closed surface when 

this volume tends towards zero. The definition 

that emerges from this reasoning therefore makes 

more sense and leads to important and classic 

results. We consider this definition, equation 2, as 

the first one in the rest of this article.  

div E⃗⃗ = lim
V→0

∯ E⃗⃗ . dS⃗⃗⃗⃗ 
S

V
 (2) 

When one re-writes the classic Gauss theorem (in 

its integral form) and when one applies to the two 

members of the equation the division by the 

volume and then the passage to the limit, when 

this volume tends towards zero, one clearly 

obtains the divergence of the electric field in the 

left member of the equation whilst the total 

electric charge divided by the volume tends 

towards the local density of charge – hence the 

first equation of Maxwell, called the Maxwell-

Gauss equation which is nothing more than the 

differential reformulation of its integral form:   

div E⃗⃗ =
ρ

ε0
 (3) 

To a large extent, this new concept of divergence 

is quite close to the elementary concept of 

instantaneous speed. If one defines the total time 

covered in one journey, one cannot say much 

about how the journey was effectively travelled. 

One starts by defining the average speed by 

dividing the distance covered by the time spent 

travelling, and then one makes the travelling time 

tend towards zero in order to define the instant 

speed. Thus, the divergence of a vector field can 

be defined as an operation of spatial 

differentiation. It allows one to obtain the local 

flux per unit volume, defined in each spatial point 

in the same way as the instantaneous speed at 

each temporal point. Using the definition of the 

divergence as the limit of flux per unit volume 

when the volume tends towards zero, one falls 

back onto the integral definition which leads to 

the famous Green-Ostrogradsky formula, that we 

will consider as our second definition in the rest 

of this article:  

∯ E⃗⃗ . dS⃗⃗⃗⃗ 
S

= ∭ div E ⃗⃗⃗  . dV
V

 (4) 
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Using again the precious analogy with the instant 

speed, what is useful to understand is the fact that 

the Ostrogradsky formula is nothing but an 

integral re-formulation of the definition of the 

divergence in the same way than the two 

following equations are strictly equivalent (in the 

case of a cinematic on the axis x):  

v(t) =
dx

dt
 and Δx = x2 − x1 = ∫ v(t). dt

2

1

 

There is neither more nor less information in the 

integral formulation than there is in the 

differential formulation. Thus, equations (2) and 

(4) are rigorously equivalent and one can hardly 

legitimately talk about an “Ostrogradsky 

theorem” since one can shift from the differential 

to the integral formulation in a quasi-immediate 

way. From a pedagogical perspective, however, 

which one is best to use? It seems to us that the 

differential formulation is quite clearly more 

meaningful. In the same way that it would be 

strange to define an instantaneous speed using an 

integral relation, it seems obvious that it is best to 

define the divergence of a vector field using a 

differential formulation. When the vector field is 

described using Cartesian co-ordinates, a simple 

calculus can help express its divergence in an 

operational way in the following way. The 

method consists in defining a rectangle box that is 

infinitely small, defined by small variations dx, 

dy and dz of the three co-ordinates. The calculus 

is described in the Physics lesson of Berkeley 

(Purcell, 2011). The final result is as follows: 

div E⃗⃗ =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
 (5) 

 

Is it relevant to present this result as the original 

definition of the divergence of a vector field? We 

do not think so. This definition was derived from 

our first definition (differential formulation). It 

will be easy, from this first definition, to come up 

with the expression of the divergence into other 

systems of (cylindrical or spherical) co-ordinates.   

To conclude on this first part, we would like to 

reaffirm that the three outcomes are derived from 

a didactical hierarchy which stops us from 

considering them as definitions that are equally 

meaningful.  

The first definition derives from the need to go 

beyond the integral formulation of the Gauss law 

which does not allow for an identification of a 

precise distribution of charges within the 

macroscopic volume under consideration. The 

second definition derives from the first one and 

comes from its integral reformulation, in view of 

highlighting the link between the flux integral and 

the volumic integral of the divergence. The 

didactical hierarchy relates to the students’ culture 

– that is: their ease with differentiating rather than 

integrating. Finally, the third result should not be, 

in our view, interpreted as a definition per se – 

one could even say that it is difficult to attach a 

meaning to it. It is, rather, an operational formula 

which helps in expressing in a concrete way, the 

divergence of a field when one knows the actual 

co-ordinates of that field. 

It is important to understand the pedagogical or 

didactical dilemmas that one can derive from the 

values of these definitions or formulations of one 

similar concept in physics. The first definition is 

necessary in order to go beyond the limits of the 

formulation of the Gauss theorem in its integral 

form; it extends it, refines it, and is naturally 

articulated around what comes before it. Thus, the 

new concept is truly rooted in a continuity of 

ideas. It does not fall from the sky, but it is 

strongly related to what the student is supposed to 

have already understood – provided that he/she 

reasonably ‘digested’ the concept of ‘ascending 

ideas’. Provided that the student has understood 

the necessity of the concept, he is progressively in 

a position to associate to that concept a profound 

meaning that can help him/her structure his/her 

understanding of it and his or her capacity to 

implement it. One must also insist on the fact that 

the concept of divergence corresponds to a spatial 

differentiation. We have already seen that, to a 

large extent, it is quite close to the definition of 

instant speed which is a founding concept in 

physics, one that most students understand and 

use well and, most of all, one that becomes, in 

higher education, an integral part of learning 
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outcomes and culture. When one has the 

opportunity to discover a new concept that has 

integrated the learning culture of the students, it 

becomes quickly very clear that, as a teacher, one 

has to grab that opportunity.  

Teaching with analogies has been investigated a 

lot. Research shows that analogies may be a 

powerful tool provided a few conditions are 

fulfilled. Harrison and Treagust [16] have shown 

that it is  ‘essential that the analogy be familiar to 

as many students as possible, that shared 

attributes be precisely identified by the teacher 

and/or students, and that the unshared attributes 

should be explicitly identified’. In this case, 

instantaneous speed is for sure a known concept 

at this level, the main shared attribute is 

differentiation or the limit in one point and the 

main unshared is that the differentiation is 

temporal in the case of speed whereas it is spatial 

in the case of divergence. Haglund and Jeppsson 

[17] have proved that self-generated analogies 

may help provided that some precautions are 

taken. It seems possible to conduct students to 

discover themselves the need to divide the 

macroscopic volume to overcome the question of 

how the total inner charge is distributed and 

hence, to find out by themselves the analogy with 

instantaneous speed. 

 Although the second definition (the Green-

Ostrogradsky) is, mathematically speaking, 

strictly equivalent to the first one, it is certainly 

less relevant due to the way in which it cumulates 

a new idea and its integral reformulation. If the 

additioning of the concept to its reformulation 

does not present a particular problem to a 

physicist, it might to a student who will tend to 

prefer, as much as possible, to isolate the concept 

in its ‘purest’ form, from its subtle mathematical 

reformulation - which tends to add some 

difficulty to the already challenging experience of 

being confronted to a new idea.  

Finally, the operational formula given by equation 

(5), if presented as a definition of the divergence 

of a vector field, deprives the student from the 

rational chain of ideas from which it derives, from 

the Gauss theorem, and thus implicitly infers that 

the concept simply appears, ex nihilo, and 

insidiously communicates the idea that physics 

emerges from the revealed truth, from magical 

thoughts. One then sees physics as ‘hocus pocus’, 

a modern form of alchemy, in which the 

construction of formulae derives from divine art 

forms; the resolution of problems is reached 

thanks to a wizard chanting the right spell – 

privilege which, of course, only belongs to the 

best few initiated to that sort of mystery.    

One will note that the elements mentioned above 

have been presented in the order in which they 

had been written in the famous ‘Berkeley lecture 

in physics’ [18]. 

To conclude with this paragraph, Huang, Wang, 

Chen and Zhang, [19] in a distinguished paper 

have shown that this teaching approach obtains 

good results. This article demonstrates the 

soundness of the didactical hierarchy exposed in 

the former lines. 

3. A brief historical study 
The history of science, and in particular that of 

vector analysis, is also likely to shed some light 

on these questions.  

Research on science teaching has been carried out 

for a long time. Pocoví [20] has proven how 

history may help in the context of conceptual 

change. Karam and Krey [21] have investigated 

the subtle connections between physics concepts 

and their writing system, mathematics, on a 

historical and philosophical point of view. The 

following lines are written with the very same 

point of view. 

These historical events have mainly been 

compiled in Michael Crowe’s book [22] , of 

which the elements explored below are derived. 

One may also refer to Stolze [23]. 

Since Descartes, the manipulation of vectors had 

been reduced to that of triplets of coordinates. 

However, the state of knowledge at that time was 

such that it was impossible to multiply or divide 

those triplets since those operations hadn’t been 

defined.  The evolution of physics and the 

mathematicians’ will to identify a vector analysis 

at the third dimension first led people to explore 

vectors through complex numbers. It was in that 
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context that Sir William Rowan Hamilton 

invented quaternions, defined as an extension of 

complex numbers at the third dimension. The 

Hamilton quaternions theory was well received 

and, to a large extent, allowed vectors of the third 

dimension to be formalized in the context of that 

tool.  James Clerk Maxwell was one of the main 

researchers to appreciate its relevance in the 

context of his studies in electromagnetism.   

Thus, from the development of field theory in 

physics emerged the need for vector analysis, in 

particular in the area of electromagnetism. It is 

therefore not surprising to notice that whilst, in 

the 1860s, Maxwell initially presented his 

equations using Cartesian coordinates, he 

reformed them in 1873 in his “Treatise on 

Electricity and Magnetism”, jointly presenting 

them using coordinates and quaternions notations. 

In that reference, Maxwell starts with a chapter 

covering mathematical preliminaries. After 

mentioning Descartes’s discovery of his system of 

coordinates, he writes in [24], pages 8 and 9: 

“But for many purposes of physical reasoning, as 

distinguished from calculation, it is desirable to 

avoid explicitly introducing the Cartesian 

coordinates, and to fix the mind at once on a 

point of space instead of its three coordinates, 

and on the magnitude and direction of a force 

instead of its three components. This mode of 

contemplating geometrical and physical 

quantities is more primitive and more natural 

than the other, although the ideas connected with 

it did not receive their full development till 

Hamilton made the next great step in dealing with 

space, by the invention of his Calculus of 

Quaternions. 

As the methods of Descartes are still the most 

familiar to students of science, and as they are 

really the most useful for purposes of calculation, 

we shall express all our results in the Cartesian 

form. I am convinced, however, that the 

introduction of the ideas, as distinguished from 

the operations and methods of Quaternions, will 

be of great use to us in the study of all parts of 

our subject, and especially in electrodynamics, 

where we have to deal with a number of physical 

quantities, the relations of which to each other 

can be expressed far more simply by a few 

expressions of Hamilton’s, than by the ordinary 

equations.” 

Here, Maxwell clearly demonstrates how 

concepts and their intrinsic definitions must be 

understood and exist independently from their re-

formulations in a system of coordinates and this, 

whilst recognizing that, for practical reasons, it is 

also necessary to generally re-formulate them in a 

system of Cartesian coordinates.  

However, quaternions became disused and could 

not survive the criticisms addressed by the 

inventors of modern vector analysis towards them 

– mainly Josiah Willard Gibbs and Oliver 

Heaviside. At the end of the 19th century, 

independently from each other and yet nearly 

simultaneously, these two scholars had invented a 

type of vector analysis that is very similar to that 

being taught today. Since Oliver Heaviside did so 

mostly in the context of electromagnetism, it is on 

his writings that we will focus next.    

In [25],Oliver Heaviside emphasized the need for 

a method based on vector analysis and, yet, 

discredited the Quaternions method: 

“ Against the above stated great advantages of 

Quaternions has to be set the fact that the 

operations met with are much more difficult than 

the corresponding ones in the ordinary system, so 

that the saving of labour is, in a great measure, 

imaginary. There is much more thinking to be 

done, for the mind has to do what in scalar 

algebra is done almost mechanically. At the same 

time, when working with vectors by the scalar 

system, there is a great advantage to be found in 

continually bearing in mind the fundamental 

ideas of the vector system. Make a compromise; 

look behind the easily-managed but complex 

scalar equations, and see the single vector one 

behind them, expressing the real thing.” 

In these few lines, Heaviside acknowledges the 

operational characteristic of the calculations being 

carried out on the scalar components of a vector 

but he also highlights the need to reason using the 

fundamental ideas derived from a vector system.  
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In [26] (p. 298), Oliver Heaviside reflects on the 

intricate links that exist between the concept of 

vector and its re-formulation in the cartesian 

system : 

“And it is a noteworthy fact that the ignorant men 

have long been in advance of the learned about 

vectors. Ignorant people, like Faraday, naturally 

think in vectors. They may know nothing of their 

formal manipulation, but if they think about 

vectors, they think of them as vectors, that is, 

directed magnitudes. No ignorant man could or 

would think about the three components of a 

vector separately, and disconnected from one 

another. That is a device of learned 

mathematicians, to enable them to evade vectors. 

The device is often useful, especially for 

calculation purposes, but for general purposes of 

reasoning the manipulation of the scalar 

components instead of the vector itself is entirely 

wrong.” 

It is in this context that he defines the divergence 

of a vector following our first definition of it. In 

[26] Heaviside writes (p. 50):  

“This being general, if we wish to find the 

distribution of electrification we must break up 

the region into smaller regions, and in the same 

manner determine the electrifications in them. 

Carrying this on down to the infinity small unit 

volume, we, by the same process of surface-

integration, find the volume-density of the 

electrification. It is then called the divergence of 

the displacement. 

That is, in general, the divergence of any flux is 

the amount of the flux leaving the unit volume”. 

Here is thus the justification, fully backed up by 

the written works of two renowned physicists of 

the 19th century, of our first paragraph assertion 

following which the concept of divergence must 

be understood in the context of vector analysis 

rather than be introduced in the form of 

manipulations of its scalar components using a 

system of Cartesian coordinates which, as 

Heaviside explains,  “is entirely wrong”. 

 

 

 

4. The survey: results 
That is, in general, the divergence of any flux is 

the amount of the flux leaving the unit volume”. 

Responses were of two types. Firstly, and most 

frequently, a quasi-equation (thus designed in the 

rest of the article) was given in a very explicit 

way, despite the rather unconventional graphical 

representation used in it. Secondly, respondents 

(although much more rarely so) gave a definition 

in plain letters and words. In that case, and each 

time it was possible, that type of response was 

linked to one of the three equations of paragraph 

1.  It is here useful to note that certain of the 

responses combined the quasi equation type with 

its ‘translation’, expressed in words. Some others 

were making a vague reference to one of the three 

equations of paragraph 1 and were therefore 

classified in the corresponding category. Some 

responses remained difficult to classify in one of 

the categories. Thus, the translation of raw 

responses to the survey presented in the tables 

below reflect the author’s own interpretation – 

and this, for at least 10% of the responses.  In 

quite a few cases, the quasi equation was 

sufficiently explicit, for it to present no ambiguity 

at all.        

For the majority, responses were given in the 

form of an equation or of a quasi equation. 

Occasionally, they were accompanied by a text 

but, with the exception of five cases out of the 

totality of 76 responses, all responses included an 

equation or a quasi equation.  

Table 1 indicates to what extent the responses can 

be classified between the three equations of 

paragraph 1. It is important to notice the high rate 

of responses for equation (5), always given with a 

quasi equation that is perfectly explicit and easy 

to read.  The rates for equations (2) and (4) are 

uncertain because often given in the form of a 

text, somehow interpreted by the authors.  
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Rate of responses (in 

percent. within the 

category) 

Limit of the 

volumic flux 

(equation (2) ) 

Green-Ostrogradsky 

formulae 

(equation (4)) 

Sum of the partial 

derivatives expressed in 

Cartesian coordinates 

(equation (5)) 

Student 0% 0% 100% 

Non-specialist 0% 0% 100% 

Person who knows 

about this subject 

9% 12% 79% 

Specialist  in this 

subject 

12% 13% 75% 

Table 1 – allocation of responses between equations (2), (4) and (5) of paragraph 1. In the category 

‘specialists’, 12% responded with the limit of the flux per unit volume (equ.2), 13% responded using the 

Green-Ostrogradsky formula (equ.4) and 75% responded using the sum of the partial derivatives (equ. (5)). 

5. Discussion and conclusion 

For the majority, responses were given in the form 

of an equation or of a quasi equation. 

In a first instance, we will comment on the number 

responses received in total. If compared with the 

potential total of the target (five hundred to six 

hundred), this result is disappointing (only seventy 

six responses). One could object to the validity of 

our research results by highlighting the fact that 

this sample is too small to allow any conclusion to 

be derived from the study. It is regretful that more 

responses could not be received. Unfortunately, 

electronic mail is so demanding nowadays that it 

is understandable that the efficiency of using it for 

such survey is rather low. Nevertheless, the fact 

that the rate of responses corresponding to 

equation (5) reached 80% is noticeable (all 

categories put together). The rate reaches 75% of 

the so-called specialists who are susceptible to 

give an answer that represents well their 

conception of the concept within three minutes 

since they are supposed to have thought about it 

for quite a long time. It is important to emphasize 

the fact that that rate, already reached after 10 

responses, remained stable after that.  It is 

therefore safe to assume that that rate is 

representative of the surveyed community, despite 

the low number of answers. 

To the extent that the study carried out presents 

some weaknesses – those of the media relied on to 

collect the responses; the level of knowledge of 

the people who responded, and the proportion of 

interpretation on a rather limited number of 

responses – the author wishes to focus the 

discussion on what seems to be mostly based on 

facts and on what seems most certain in the whole 

set of results. As it happens, this constitutes, 

anyway, the main lesson of the study. We are here 

talking about the importance taken by the rate of 

equation (5), equation which encompasses the 

weakest value of definition of the concept, 

potentially that to which one could assign the least 

value of definition. One will add that the few 

responses that make reference to the local flux do 

so in a very indirect way, whilst the definition 

specifying that “the limit of the flux per unit 

volume of A through a closed surface when the 

closed volume tends towards zero” is, in fact, a 

very explicit definition, not that complex, 

containing similarities with the concept of 

instantaneous speed.  So, why is this definition 

lacking so much from the sample of collected 

responses? Why does the overwhelming majority 

of lecturers, including those who consider 

themselves as specialists in that field, give an 

equation, though not wrong, is not the best one as 

an intrinsic definition for the concept?  

The answer is probably complex. Certainly, for a 

confirmed physicist who has understood deeply 

the concept, the three equations (2), (4) and (5) are 

strictly equivalent but that is only because as soon 
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as he sees the mathematic equation he instantly 

thinks about the definition behind the formula 

itself.  Somehow he thinks in “physics language” 

but talks in “mathematical language” just like one 

can think and speak in foreign languages once he 

becomes fluent enough to do so. Yet, what is 

possible for a confirmed physicist is not as easily 

done for an undergraduate student.  Just because a 

physicist can instantly identify and think of the 

formula in a physical sense does not mean it is as 

easily done for a beginning student who will 

simply see the formula and use it without ever 

thinking about the actual meaning behind it.   

To conclude, this study asks some questions 

concerning the epistemological relationship that a 

scientist has with his / her own discipline. For 

didactical reasons, it may be helpful to consider 

what has already been stressed by, among others, 

Maxwell and Heaviside, two major pioneers of 

Electrodynamics theory. We have seen the 

importance of History of Science since the 

question of the best way to introduce a concept has 

already been an issue in the 19th century when 

electrodynamics was still an active field of 

research. In that way, History of Science sheds 

some light on didactics. Last but not least, we have 

also seen the importance of epistemology or 

Nature of Science since the whole thing is about 

the epistemology of physics with respect to its 

main writing system, mathematics. 

We believe that these issues are fundamental in 

the education of future Science teachers to prevent 

misleading confusions between concept and their 

mathematical formalization. 
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Abstract 

Dimensional Analysis forms a very significant 

part of study of physics. The students are 

supposed to read this prior to themselves 

making inroads into cardinal areas of physics. 

Basically the students are taught that [M]. [L], 

[T] are the fundamental dimensions and the 

dimension of every other quantity can be 

derived from them. The other key factors which 

are highlighted are that every equation is 

dimensionally homogeneous. Dimension 

analysis helps us to understand link between 

the units/dimension of physical quantity. 

It gives very interesting results and helps to 

solve various unknown problems which would 

otherwise require a lot of experimental work. 

Through this article we shall cite quite a few 

examples to sensitize the students about some 

of the additional features of dimensional 

analysis which generally go-unnoticed. 

Key Words: Dimensional analysis; 

Dimensional homogeneity; Physical quantities. 

 

Introduction 

Dimensional analysis is a tool used in physics 

and engineering for deriving theoretical 

equations, checking empirical formulae, 

describing experiments, interpreting results 

from scale models and performing conversions 

between different systems of units [1]. 

Bridgman (1931) stated that, “The principal use 

of dimensional analysis is to deduce from a 

study of the dimensions of the variables in any  

physical system certain limitations on the form 

of any possible relationship between those 

variables [2]. It is mainly used to find the 

relations among physical quantities in 

complicated physical systems by their 

dimensions. 

Dimensional Analysis studies the properties of 

observable quantities with dimensions and the 

properties of mathematical relationships that 

incorporate them [3]. This analysis is applied in 

the natural sciences; its principles (dimension, 

homogeneity, measurement and unity) are key 

to the formation of scientific thought since they 

are part of the basic principles of science. 

Compliance with the principles of Dimensional 
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Analysis, and in particular the principle of 

dimensional homogeneity, is a basic 

prerequisite for proper mathematical modelling, 

Many researchers have applied dimensional 

analysis as an analytical tool in various fields 

such as Geography [1], Biology [4, 5, 6], 

Economics [7,8,9] and other fields. A book by 

Don S.Lemons [10] covers the methods, history 

and formalisation of the field, and provides 

physics and engineering applications through 

the mathematical methods of dimensional 

analysis. 

An historical outline of dimension analysis is 

given by Huntley [11] who credits Newton with 

the discovery of the “principle of similitude” 

and Fourier with its development into present 

method. Several general treatments are available 

in the literature [2, 12, 13, 14, 15]. Use of the 

special symbols M, L, and T to denote the 

dimensions of mass, length, and time has 

become standard [16]. Physical dimensions 

refer to the measurement systems to characterise 

certain objects. Each physical dimension has 

several empirical scales of measurements and 

they are called “units”. There are seven 

fundamental physical dimensions, namely mass 

M, length L, time T, temperature Ѳ, electric 

current I(or charge Q), amount of substance mol 

and luminous intensity Iv.  The corresponding 

units defined by SI (international System of 

Units) are kilogram, metre, second, kelvin, 

ampere, mole and candela respectively. All 

other physical quantities are combinations of 

these fundamental quantities.[17]. The general 

procedure of applying dimensional analysis is 

given by W.Shen [17] and others [18,19].  

The fundamental purpose of the present 

research article is to introduce the basic 

principles of Dimensional Analysis in the 

context of the real physical problems by citing 

few examples to sensitize undergraduate 

students about the additional features of 

Dimensional Analysis. 

 Dimensional Analysis from Student’s 

perspective: Misconceptions and 

Applications 

The students are taught to derive equations such 

as  

                              T= 2π√
𝑙

𝑔
 ………………. (1) 

for the time period of oscillation of a simple 

pendulum, by assuming that ‘T’ is a function of  

‘l’  and  ‘g’ by expressing  

                            T = k la gb    ………………(2), 

Where, k = a dimensionless constant and a, b 

are pure numbers. 

We arrive at the result (Equation (1)) which is 

restricted to the extent that the value of the 

constant k cannot be fixed. 

Students are exposed to similar exercises on 

introduction of εo and μo in connection with the 

electric and magnetic units and their links with 

[M], [L], [T]. While the above referred exercises 

are useful for the students, it has been felt that 

dimensional analysis has lot more to offer. As a 

matter of fact lot of physics, mathematical 

techniques can be made to evolve from 

Dimensional Analysis. Like in Eq (1) we have 

used the product format, but have we pondered 

over the fact that quantities with different 

dimensions can be multiplied (e.g. mass x 

velocity = momentum), or one can be divided 

by the other (e.g. density = mass/volume), but 

they cannot be added or subtracted! 

Through this article we shall cite quite a few 

examples as mentioned earlier to sensitize the 

students about some of the additional features of 

Dimensional Analysis.  



Physics Education        July - September 2019 

35/3/02                                                                   3                                                   www.physedu.in 
 

Let us start by narrating an incident given in the 

following section. 

Dimension of the argument of the 

exponential function  

 It is about a student from physics honours, 

while attempting a question on Maxwellian 

distribution of velocities, he could recollect the 

exponential factor as 𝑒−𝑏𝑢2
, but he was 

confused about the value of ‘b’, that  is whether 

it is 
𝑚

2𝑘𝑇
 or  

2𝑘𝑇

𝑚
. As he was feeling restless about 

it, a small help was offered and while doing so, 

it was explained to him that 

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ , −∞ < 𝑥 < ∞ ..(3) 

So if ‘𝑥’ has a dimension , you have to add 

quantities having different dimensions which is 

absurd, so ‘𝑥’ must be dimensionless. This was 

something which the student had not realised 

earlier. So he could immediately make out that 

‘b𝑢2’ must be dimensionless, and if b = 
𝑚

2𝑘𝑇
 , 

then both the numerator and denominator of ‘b’ 

would have the dimensions of energy which 

would make ‘b’ dimensionless. A student needs 

to imbibe this fact as a concept and should take 

every opportunity to verify this. Some 

illustrative cases are the discharge through an R-

C circuit or an L-R circuit. The equations are- 

                            𝑞 = 𝑞𝑜𝑒−𝑡/𝑐𝑅……………..(4) 

                         𝑖 = 𝑖𝑜 𝑒−𝑅𝑡/𝐿………………..(5) 

It can be verified that 𝐶𝑅 or 
𝐿

𝑅
 has the dimension 

of time. We shall now cite few more examples 

Dimension of ‘h’  

‘h’ has the same dimension  as that of  action , 

i.e (position ) x (momentum). The said 

quantities are canonically conjugate. It is given 

by 𝑀𝐿2𝑇−1, which also happens to be the 

dimension of angular momentum. This must 

have been taken into consideration by Prof. 

Niels Bohr while making his path breaking 

postulate about the stationary orbits. In order to 

standardize the orbits, he had to take into 

account a physical quantity which is conserved. 

The electronic orbit in an atom is caused by a 

central force hence, the angular momentum is a 

conserved quantity. So orbits can be 

standardised with the help of angular 

momentum. 

Now, in order to express the condition for 

stationary orbit, angular momentum has to be 

equated with a quantity through which 

discreteness of the orbit, deemed to be the 

conceivable minimum possible value, gets 

reflected. Over and above it should have the 

dimension 𝑀 𝐿2 𝑇−1. 

All the above conditions are fulfilled by h or ћ 

and we have the mathematical statement of the 

postulate (with symbols having usual meanings) 

as, 

              𝑚𝑣𝑟 =  
𝑛ℎ

2𝜋
       …………………….(6) 

 Or       𝑚𝑣𝑟 = 𝑛 ћ        …………………….(7)          

  with   n = 1,2,3,……. 

Thus we see that the dimensional analysis of ‘h’ 

plays a crucial role in the framing of Niels 

Bohr’s postulation of stationary orbits. A similar 

exercise can also be done by relating 

dimensional analysis with the uncertainty 

principle and the simple fact that the 

Commutator of two hermitian operators is 

skew-hermitian to arrive at the schrondinger’s 

operator formalism. Now we will deal with 

three problems. 

Problem 1 

To obtain a reasonable estimate of the time it 

takes for the sand to run out fully through a 

timer (see Figure 1) 
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                      Figure 1 

Solution                                     

The rate of flow of sand through the constriction 

(aperture) can be assumed to be uniform and the 

total time of flow, TA, is proportional to the 

volume of the sand, V 

V= 
𝜋ℎ𝑟2 

3
 = 

𝜋ℎ(ℎ𝑡𝑎𝑛𝛼)2

3
,     α is the semi vertical 

angle of the inverted cone 

   = 
𝜋ℎ3𝑡𝑎𝑛2𝛼

3
 

Therefore    Vα ℎ3                                         (8) 

The required time, say, TA, may also depend on 

the acceleration due to gravity g, the diameter of 

the aperture, d, and the density of sand, ρ, 

So     

TA α  ℎ3 x f(g,d, ρ)                                     (9) 

Now, among g,d,ρ only ‘g’ involves dimension 

of time, it is indeed 
𝐿

𝑇2. So the function ‘f’ has to 

be proportional to the reciprocal of square root 

of ‘g’. Now 
1

√𝑔
 has the dimension 

𝑇

𝐿1/2. We 

already have 𝐿3 as a multiplier. So effectively 

the involved dimension of L is given by 𝐿3/2. 

And TA cannot depend on ρ which is 
𝑚

𝐿3
. 

So  

TA α 𝐿−5/2 

Therefore,  

Altogether  TA α 
ℎ3𝑔−1/2

𝑑5/2
 = 

ℎ3

√(𝑔𝑑5)
                  (10) 

The constant of proportionality is a 

dimensionless number and can be assumed for 

the sake of simplicity to be of the order of one. 

So an estimate for TA is 
ℎ3

√(𝑔𝑑5)
                       (11) 

If h= 10cm, d= 1mm and g= 10ms-2 

Then    TA = 
(0.1)3𝑚3

√{(10 𝑚𝑠−2)×(0.001𝑚)5}
 

                = 
0.001𝑠𝑒𝑐

√(10×10−15)
 

                = 104sec  =  2.78hr 

We have ignored the diameter of the grains of 

the sand in the analysis, but the trickiest part 

was to select the parameters relevant for 

dimensional analysis. 

Problem 2 

Two light unstretched, identical springs are 

joined using a small bob of mass m. The springs 

are  anchored at the ends and arranged along a 

straight line, as shown in the Figure 2 below 

 

Figure 2 

The bob is displaced in a direction 

perpendicular to the line of the springs by 1cm 

and then released. The period of the resulting 

vibration of the bob is 2sec. We have to find the 

period of vibration if the bob were displaced by 

2cm before release .The unstretched length of 

each spring is Lo(Lo >>1cm) and the effect of 

gravity is to be ignored. 

Solution: Refer to Figure 3 below 

 

 

 

Figure 3 
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The stretched length of each spring is  

𝑙 =  √𝑙𝑜
2 + 𝑥2 

                              = 𝑙𝑜 √(1 +  
𝑥2

𝑙𝑜
2)       

𝑙𝑜 ≫ 𝑥 

Therefore     𝑙 = 𝑙𝑜  +  
𝑥2

2𝑙𝑜
 ………………(12) 

Tension in the spring is given by  

                        𝐹 =  𝑘
𝑥2

2𝑙𝑜
 ……………….(13) 

The resultant force acting on the spring can be 

given by  

                                       𝐹𝑅  = 2𝐹𝑐𝑜𝑠𝜃 

where                           𝑐𝑜𝑠𝜃 =
𝑥

√(𝑙𝑜
2+𝑥2)

 

therefore              𝐹𝑅   =  
𝑥

𝑙𝑜
 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑙𝑜 ≫ 𝑥) 

                                          = 2𝑘
𝑥2

2𝑙𝑜
∙

𝑥

𝑙𝑜
 

                                         =
𝑘𝑥3

𝑙𝑜
2  …………..(14) 

The net force on the spring = - 
𝑘𝑥3

𝑙𝑜
2  ……….(15) 

The negative sign appears because the resultant 

force acts opposite to the displacement and the 

resulting equation of motion is  

𝑚𝑥 ̈ = - 
𝑘𝑥3

𝑙𝑜2     or 

                             �̈� = - C𝑥3  ……………(16) 

where 𝐶 =  
𝑘

𝑚𝑙𝑜
2 

Multiplying both sides of (16) by 2�̇�, we get  

2 �̇��̈� =  −𝐶(2�̇�𝑥3) 

𝑑(�̇�)2

𝑑𝑥
=  −𝐶

𝑑

𝑑𝑥
(
𝑥4

2
) 

Therefore,  �̇�2 =  −𝐶𝑜𝑥4 + 𝐴, 𝑤ℎ𝑒𝑟𝑒 𝐶𝑜 =
𝐶

2
  

and   A = a constant 

Now �̇� = 0, when 𝑥 = 𝑎 = the amplitude of the 

bob 

∴ 0 =  −𝐶0𝑎4 + 𝐴 

∴ 𝐴 = 𝐶0𝑎4 

                    ∴ �̇�2 =  𝐶0(𝑎4 − 𝑥4)…………(17) 

 

∴ �̇� =  √𝐶0(𝑎4 − 𝑥4) 

 

            ∴
𝑑𝑥

√𝐶0(𝑎4−𝑥4)
=  √𝐶0𝑑𝑡 …………….(18) 

 

‘x’ attains the maximum value , i.e.  x = a, when 

t = T/4, where T is the time period.  

 

Therefore from (18), we get  

              ∫ 𝑑𝑡 
𝑇/4

0
=  

1

√𝐶0
 ∫

𝑑𝑥

√𝑎4−𝑥4

𝑎

0
………... (19) 

 

Putting the values of 𝐶0 =
𝑘

2𝑚𝑙𝑜
2, we get 

𝑇

4
= 𝑙𝑜√

2𝑚

𝑘
 ∫

𝑑𝑥

√𝑎4 − 𝑥4

𝑎

0

 

 

             𝑇 = 𝑙𝑜√
32𝑚

𝑘
 ∫

𝑑𝑥

√𝑎4−𝑥4

𝑎

0
 ……………(20) 

 

we  put u = x/a  

then  dx = a du, when x=0, u=0 

                                     x=a, u = 1 

and  

√𝑎4 − 𝑥4 = 𝑎2√1 − 𝑢4  

 

∴ 𝑇 = 𝑙𝑜√
32𝑚

𝑘
 .

1

𝑎
∫

𝑑𝑢

√1−𝑢4

1

0
      …………….(21) 

                          ∴ 𝑇 =  
𝐾𝑜𝐼

𝑎
 ……….……….(22) 
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               𝑤ℎ𝑒𝑟𝑒 𝐾𝑜 = 𝑙𝑜√
32𝑚

𝑘
 …………...(23) 

                    and  𝐼 =  ∫
𝑑𝑢

√1−𝑢4

1

0
…………..(24) 

Both 𝐾𝑜 and I are constants  

                           ∴ 𝑇 ∝  
1

𝑎
 ………………….(25) 

Thus if the amplitude is doubled from 1cm to 

2cm the time period gets halved. So it will be 
1

2
 

of 2s = 1s 

Thus without actually working out the integral 

‘I’, we can solve the problem. Incidentally this 

integral cannot be worked out in a closed form, 

however the definite integral can be worked out 

using numerical methods. Its approximate value 

is 1.3 

So, the trick was getting the inverse 

proportionality between the time period and the 

amplitude. 

Now, another trick can be applied using 

dimensional analysis at the stage of Eq(16), 

which is  

�̈� = − 𝐶𝑥3 

From this equation, we can suppose that ‘T’ 

depends only on ‘C’ and ‘a’. Let us write the 

dependence as  

𝑇 ∝ 𝐶𝛼 × 𝑎𝛽 

∴ [𝑇] = [𝐶]𝛼 × [𝑎]𝛽 

 

𝐶 =  
𝐾

𝑚𝑙𝑜
2 

[𝐶] =  
[𝑘]

𝑀𝐿2
  

[𝐶] =  
𝑀𝐿𝑇−2𝐿−1

𝑀𝐿2
=  

1

𝐿2𝑇2
 

[𝑇] = [𝑇]−2𝛼 × [𝐿]−2𝛼+𝛽 

Above is satisfied with  −2𝛼 = 1 and −2𝛼 +

𝛽 = 0 

𝛼 =  −
1

2
 and  𝛽 =  −1 

which again implies  𝑇 ∝
1

𝑎
 , it is identical to 

(25) 

So, dimensional analysis also does the trick and 

much more elegantly. 

 

Problem 3 

To find an estimate of total mass of water 

present in the different water sources on Earth. 

Solution  

We can solve this problem by Dimensional 

Analysis. To solve the problem we have to start 

by approximating that the amount of water on 

earth is equal to the water in oceans plus the 

water in rivers. Initially we try to estimate two 

quantities, the density of water and the volume 

of water contained in the oceans, and also the 

density of water and volume of water contained 

in the rivers. The relationship we use is 

 

(mass)total = (density)ocean (volume)ocean + 

(density)river (volume)river      …………...……(26) 

 

The problem in solving estimation related 

problems is to decide the relationship that exists 

between the physical quantities. For this we can 

apply dimensional analysis. 

Density has the dimension of mass/volume, so 

our relationship is  

 

(𝑚𝑎𝑠𝑠)𝑡𝑜𝑡𝑎𝑙 =  
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
(𝑣𝑜𝑙𝑢𝑚𝑒)𝑜𝑐𝑒𝑎𝑛  +

 
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
(𝑣𝑜𝑙𝑢𝑚𝑒)𝑟𝑖𝑣𝑒𝑟                       ………(27) 

 

The density of fresh water is ρwater = 1.0 g-cm-3 ; 

the density of sea water is slightly higher, but 

the difference will not matter for this estimate. 

We can model the volume occupied by the 

oceans and rivers as if they completely cover 

the earth , forming the spherical shell (figure 4). 

The volume of a spherical shell of radius Rearth 

and thickness t is given by 

 

    (𝑣𝑜𝑙𝑢𝑚𝑒)𝑠ℎ𝑒𝑙𝑙 = 4𝜋𝑅𝑒𝑎𝑟𝑡ℎ
2 𝑡 ……………(28) 

 

Where Rearth is the radius of the earth and t is the 

average depth of the ocean.  



Physics Education        July - September 2019 

35/3/02                                                                   7                                                   www.physedu.in 
 

 
Figure 4 

Assuming that the rivers flow into oceans we 

can ignore the mass of water in the river and 

also take account of the fact that the oceans 

cover about 75% of the surface of the earth. So 

the volume of the ocean is  

 

  (𝑣𝑜𝑙𝑢𝑚𝑒)𝑜𝑐𝑒𝑎𝑛 = (0.75)4𝜋𝑅𝑒𝑎𝑟𝑡ℎ
2 𝑡……(29) 

 

Taking the radius of earth as Rearth = 6 x 103 km 

and the average depth of the ocean as t = 2km, 

 

(mass)ocean  = (density)water(volume)ocean 

 

                     = ρwater (0.75)( 4𝜋𝑅𝑒𝑎𝑟𝑡ℎ
2 𝑡) 

 

                    = 678 x 109 kg approx 

                     

Conclusion 

Through this article we have been able to 

sensitize students about some features of 

dimensional analysis in addition to those 

available in standard textbooks by citing 

examples on period of simple pendulum, 

dimension of h, canonically conjugate pairs. We 

have also solved some unknown problems like 

finding the total mass of water in water 

resources on earth up to a good approximation 

and a reasonable estimate of the time it takes for 

the sand to run out fully through a timer. The 

students will find it exciting to model real life 

physics problems on the basis of estimation of 

independent and dependent variables and find a 

working formula for it through dimensional 

analysis. Students would also be able to 

appreciate the optimum use of dimensional 

analysis as a powerful mathematical tool in 

solving various problems.  

 

References 

1. Robin M.Haynes, “Dimension Analysis: 

Some Applications In Human Geography, 

Geographical Analysis page 51, 

onlinelibrary.wiley.com/doi/10.1111/j.1538

-4632.1975.tb01023.x] 

2. Bridgeman, P.W. Dimension  Analysis  

New Haven : Yale University Press, 1931 

3. Sonin,A. “The Physical Basis of 

Dimensional Analysis MIT, Cambridge, 

M.A, web.mit.edu/2.25/www/pdf/DA 

unified.pdf 

4. Stahl,W.R. “dimension analysis in 

Mathematical BiologyI: General 

Discussion.” Bulletin of Mathemaical 

Biophysics, 23 (1961),355-76 

5. Stahl,W.R. “dimension analysis in 

Mathematical BiologyII: General 

Discussion.” Bulletin of Mathemaical 

Biophysics, 24 (1962), 81- 108 

6. Thompson, D’Arcy W. On Growth and 

Form. Abridged edition. Cambridege : 

Cambridge University Press, 1966 

7. Jong, F.J.de. Dimension analysis for 

economists.Amsterdam : North- Holland 

Publishing company ,1967] 

8. MA Texocotitla , 

https://arxiv.org/pdf/1802.10528 (2018) 

9. Grudzewski, W. M. & Roslanowska, K. 

(2013). Application of Dimensional 

Analysis in Economics. Amsterdam: IOS 

Press. 

10. Don S.Lemons  “A Student’s guide to 

Dimension Analysis” (2017) 

11. Huntley, H.E. Dimension Analysis .New 

York: Dover Publications , Inc.,1967 

12. Kline, S.J. Similitude and Approximation 

Theory, New York : McGraw- Hill Book 

Co. 1965 



Physics Education        July - September 2019 

35/3/02                                                                   8                                                   www.physedu.in 
 

13. Langhaar, H.L. Dimension Analysis and 

theory of models  New York : John Wiley, 

1951 

14. Ofer Eyal and Eli Raz, “The use of 

dimensional analysis to find fields sourced 

by distributions on self-scaled geometric 

shapes”  European Journal of Physics, 

Volume 37, Number 4 (2016), 

15. M Taylor , “100 Years of dimensional 

analysis: New steps toward empirical law 

...” https://arxiv.org/pdf/0709.3584 (2007) 

16. Clerk-Maxwell, J. ‘Remarks on the 

mathematical Classification of Physical 

Quantities. “ Proceedings of the London 

Mathematical Society 3 (1872), 224-32 

17. Weijie Shen, Tim Davis, Dennis K.J.Lin 

and Christopher J.Nachtshelm  “Dimension 

Analysis and its Applications in statistics , 

www.personal.psu.edu/users/j/x/jxz203/lin/

Lin_pub/2014_JQT_1.pdf 

18. Fluid Mechanics, Fourth edition by Frank 

White 

19. nptel.ac.in/courses/dimension analysis 

20. Peter Gnadig, Gyula Honyek and Ken 

Riley, “200 Puzzling Physics Problems,” 

Cambridge University press (2001) 

 



Physics Education July - September 2019

Impulse, Energy, and Collision: Old Conceptions,

New Viewpoints

M.L.L.Iannini

Departamento de Fı̀sica,
CENTRO FEDERAL DE EDUCAÇÃO
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Abstract

In the literature[1, 2, 3], the contents about lin-

ear momentum, kinetic energy, principles of con-

servation, and types of collision are shown in an

order where the ideas are not interconnected.

For instance, the definition of elastic and inelas-

tic collisions is only concerned with the conser-

vation or not of kinetic energy, but the meaning

expressed by the coefficient of restitution is not

related to conservation of energy but with rela-

tive speeds between the objects after and before

the impact. Another example of the disconnec-

tion between the principles exposed in the liter-

ature is in the fact that in the perfectly inelastic

collisions, we do not know why the objects, af-

ter the impact, should stick together and what

is its connection with the maximum loss of ki-

netic energy of the system as a result of the

impact. Is the concept of elasticity only related

to energy conservation? The analyzed literature

expose all these issues without establishing the

connections among them. These incoherences

can cause difficulties to the students to get a

complete overlook about of subject.

From a few background definitions, to-

gether with a new concept about elasticity, we

will bridge strong correlations among types of

collision, impulse, energy, and the coefficient

of restitution. We see that the use of energy

as a way of classifying collisions may cause

difficulties to realize some interesting relations

among these concepts. For this purpose, we

will study the head-on collision between two

objects with a spring attached in one. The

meaningful idea introduced in this approach

is to divide the collision at two stages: the

compression and expansion ones. In this way,

we can analyze the changes of momentum and

energy of the system in these stages. We will

have, in the expansion stage, an opportunity

35/3/03 1 www.physedu.in



Physics Education July - September 2019

to redefine the concept of elasticity, more close

to our intuition and appropriate to understand

the subject. This new definition has, as a

result, the expected conclusions got from the

literature, and a simple reinterpretation of

the coefficient of restitution reinforce them.

From the study of the proposed example,

we will find what assumptions are necessary

to ensure that a collision will be perfectly elastic.

1 Introduction

In a collision although the linear momentum
of an individual particle changes, the linear
momentum of a system does not. This is ow-
ing to Newton’s third law of motion which
ensures that, during the impact, the forces
between two interacting objects have the
same magnitude, but opposite directions.
Thus, independent of the complex relation-
ship between force and time (whose area is
the impulse), the total momentum added to
the system is zero. In this article, we start
the subject without using the previous no-
tion of impulse and momentum. We will
underscore the relevance of Newton’s third
law together with Newton’s second one to
highlight aspects of the collision study not
mentioned before. From this analysis, we
understand the reason for creating quanti-
ties (impulse and linear momentum) for its
special roles as conservative properties. In
the section, we present a new approach to
the collision subject through the analysis of a
suitable example and compare the main dif-
ferences between our exposition and those

used in literature. For instance, the equa-
tions used in a perfectly elastic collision are:

m1 ~v1i + m2 ~v2i = m1 ~v1 f + m2 ~v2 f (1)

m1(v1i)
2

2
+

m2(v2i)
2

2
=

m1(v1 f )
2

2

+
m2(v2 f )

2

2

(2)

The first equation states to the conservation
of linear momentum and the second one to
the conservation of energy. This approach is
broadly used in the literature to find the fi-
nal velocities of objects after a perfectly elas-
tic collision. Some textbook[3] shows a the-
orem which states that, given the initial ve-
locities of the particles in the center-of-mass
reference frame ( ~u1i and ~u2i), the final veloc-
ities, after a perfectly elastic collision, are:

~u1 f = − ~u1i and ~u2 f = − ~u2i.

This symmetry between initial and final
speeds gives us a key to understand that the
velocity of the center-of-mass is a divider be-
tween two stages and through the analysis
of the collision in these ones, one can create
a new concept about elasticity. More widely
and simple, it allows to find a direct solution
for the system Eq. (2). We see that the a sim-
ple reinterpretation of the coefficient of resti-
tution is directly related to this new concept,
reinforcing its accuracy. During the analysis
of the proposed problem, we see that a sim-
ple change of referential allow us to prove
the cited theorem. Further, we will analyze
what assumptions are needed to classify a
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collision as perfectly inelastic and why the
joint of the objects, after the impact, implies
in the maximum loss of kinetic energy of the
system.

2 Types of collision: An overview.

In the proposed example we consider two
objects with masses m1 and m2, and speeds
v1 and v2 (with v1 > v2). The spring is con-
nected with the object 2, and has a high elas-
tic constant, i.e., the total contact time τ is
extremely small τ → 0. This assumption is
intended to ensure that the position of the
objects, as they collide, does not change1. As
the object 1 reaches the object 2, the spring
starts to be compressed. At this moment we
note that v1 decreases and v2 increases ac-
cording to the moment conservation

v1(t)− v1 = −m2

m1
(v2(t)− v2).

while the system remains in the compres-
sion stage, the total energy stored in the sys-
tem is

E =
m1[v1(t)]2

2
+

m2[v2(t)]2

2
+

k(∆x)2

2
.

Where
k(∆x)2

2
=

m1
(
[v1(t)]2 − [v1]

2)
2

+
m2
(
[v2(t)]2 − [v2]

2)
2

.

The spring will be compressed until v1(t) =
v2(t) = v, so v can be found by

m1(~v− ~v1) = −m2(~v− ~v2)

~v =
m1~v1 + m2~v2

m1 + m2
.

1reader who is interested in solving the differential equation
of the collision between two or more objects see Ref.[8] for further
details.

The velocity of the system (v) correspond-
ing to the known center-of-mass velocity
vcm. If the spring absorbs the remaining en-
ergy, i.e. the difference between the kinetic
energies of the system before and after the
impact. The energy stored, as potential en-
ergy, is

Ep =
m1v2

1+m2v2
2

2 − m1+m2
2

(
m1v1+m2v2

m1+m2

)2

Ep =
m2

1v2
1+m1m2v2

2+m1m2v2
1+m2

2v2
2−m2

1v2
1−2m1m2v1v2−m2

2v2
2

2(m1+m2)

Ep = m1m2(v1−v2)
2

2(m1+m2)

Note that from this point (maximum
compression), the kinetic energy of the sys-
tem is minimum. Whether, at this moment,
we would withdraw the spring between the
objects, the losing kinetic energy would be
maximum. The concept of elasticity is re-
lated to the capacity of the spring in restor-
ing the impulse gained during the compres-
sion stage. To establish a comparison be-
tween these impulses, we use the definition
of the coefficient of restitution as2:

ε =
Ie

Ic
.

Where Ic and Ie state that the impulse trans-
mitted in the compression and expansion
stages, respectively. The energy stored in
the compression was removed from the
initial kinetic energy of the system and, as
the spring expands, it returns a fraction
of the impulse gained in the compression
stage. If, at the maximum compression,

2This definition is not new, we can find for example in old
articles[4], but for an unknown reason, its use has been abandoned
in the current physics textbooks.
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the spring locks, we have Ie = 0 and thus
ε = 0. This condition allows to classify
it as a perfectly inelastic collision. In ad-
dition, the losing energy (stored in the
spring) is maximum. Owing to this con-
dition, in a perfectly inelastic collision, the
objects join itself’s and have the same speed.

Another type of collision arises from
the assumption that the spring displays the
same behavior in both compression and ex-
pansion stages. Therefore, the existing sym-
metry between these stages assures that Ic =

Ie, and ε = 1. Furthermore, at the end of the
collision, the spring has no stored energy, as-
suring that the kinetic energy of the system
is preserved.

In the expansion stage v1(t), as in the
compression one, decreases while v2(t), in-
creases. The assumption that the collision is
perfectly elastic establishes that, for both ob-
jects, the impulse vector is the same in the
two stages, therefore in both ones the speed
v1 decreases the same quantity v1− vcm, and
the total decrease in v1 is 2(v1− vcm). The fi-
nal velocity is therefore:

~v1 f = ~v1− 2(~v1− ~vcm) ∴ ~v1 f = −~v1 + 2 ~vcm

(3)
as ~vcm is

~v =
m1~v1 + m2~v2

m1 + m2
,

we have

~v1 f = −~v1 +
2m1~v1 + 2m2~v2

m1 + m2

~v1 f =
−m1~v1 −m2~v1 + 2m1~v1 + 2m2~v2

m1 + m2

~v1 f =
m1 −m2

m1 + m2
~v1 +

2m2

m1 + m2
~v2.

For the object 2, the same process occurs, but
now the impulse vector, in both stages, is in
the same direction of v2. Therefore v2 f is

~v2 f = ~v2 + 2( ~vcm − ~v2) ∴ ~v2 f = −~v2 + 2 ~vcm

~v2 f = −~v2 +
2m1~v1 + 2m2~v2

m1 + m2

~v2 f =
−m1~v2 −m2~v2 + 2m1~v1 + 2m2~v2

m1 + m2

~v2 f =
m2 −m1

m1 + m2
~v2 +

2m1

m1 + m2
~v1.

These results are the same obtained from the
solution of the system

m̆1 ~v1i + m2 ~v2i = m1 ~v1 f + m2 ~v2 f

m1(v1i)
2

2
+

m2(v2i)
2

2
=

m1(v1 f )
2

2
+

m2(v2 f )
2

2
,

but, we establish nothing about the conser-
vation of energy. It comes from the assump-
tion that the impulses, in the stages, are the
same.

Now, we will show the connection be-
tween our solution and the center-of-mass
theorem. To prove the theorem proposed,
we rewrite ~v1i and ~v2i in the center-of-mass
reference frame, ~v′1i and ~v′2i, respectively. It
is known that, in the instant of maximum
compression, the system moves according to
its center-of-mass speed, thus ~v′1 = ~v′2 = 0.
If the collision is perfectly elastic, we know
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that the impulse I2 has the same magnitude
to the impulse I1. From the center-of-mass
reference frame, it is easy to conclude that
the final velocities are in opposite directions,
in relation to the initial ones, but the magni-
tudes are the same. Given the initial speeds
~v1i and ~v2i, we have ~v′i = ~vi − ~vcm, and after

the expansion ~v′f = −~v′i = −~vi + ~vcm. With
the purpose of finding the final velocities, in
relation to the observer frame, we have to
add the center-of-mass speed to the ~vcm

~v f =
~v′f + ~vcm = −~vi + 2 ~vcm,

according to Eq. (3).

The collision seen in both frames
(center-of-mass frame and observer one) is
shown in the Fig. 1

Figure 1: Collision at three different stages
(from upper to bottom): before the impact,
at the end of the compression, and at the end
of the expansion in the observer referential
frame (a) and, in the center of mass one (b).

3 A correct interpretation of

coefficient of restitution.

In the current literature, the coefficient of
restitution is defined as the ratio of relative
speeds after and before the impact,

e =
| ~v1 f − ~v2 f |
| ~v1i − ~v2i|

.

From this definition, the collisions can be
classify as

• e > 1, superelastic collision

• e = 1, perfectly elastic collision.

• 0 < e < 1, inelastic collision.

• e = 0, perfectly inelastic collision.

As discussed before, in the perfectly elastic
collision the speeds v

′
i and v

′
f have the same

magnitude, thus the ratio of relative speeds
after and before the impact is

e =
| ~v′1 f −

~v′2 f |

| ~v′1i −
~v′2i|

,

as ~v′1i = −
~v′1 f and ~v′2i = −

~v′2 f , we have

e =
| ~v1 f − ~v2 f |
| − ~v1 f + ~v2 f |

= 1.

Let me suppose that, at the instant of
the maximum compression of the string,
something blocks their return. In this case,
the relative speed between the objects is zero
due to its joint. In that way, this collision is
classified as perfectly inelastic collision(e =

0). Both the definitions about coefficient of
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restitution lead to the same results in the
perfectly elastic collision and in the perfectly
inelastic one. Are these definitions equiva-
lent? Which one best describes the subject?
We start answering the first question.
The relative velocity between the objects be-
fore the impact (~vb

r ) is ~vb
r = ~v2i − ~v1i, rear-

ranged the terms as ~vb
r = ( ~vcm− ~v1i)+ ( ~v2i−

~vcm) and considering that

~Ic

m1
= ~vcm − ~v1i and

~Ic

m2
= ~v2i − ~vcm,

we have

~vb
r = ~v2i − ~v1i =

~Ic

m1
+

~Ic

m2
. (4)

In the same way, we can relate the relative
speeds between the objects after the impact
(~va

r ) with the impulse in expansion stage Ie.
Follow the same steps used previously, we
find

~va
r = ~v2 f − ~v1 f =

Ie

m1
+

Ie

m2
, (5)

The usual definition about coefficient of
restitution states that

e =
|~va

r |
|~vb

r |
=
| ~v′1 f −

~v′2 f |

| ~v′1i −
~v′2i|

, (6)

put the relations 4 and 5 into 6:

e =
|~va

r |
|~vb

r |
=
| ~v′1 f −

~v′2 f |

| ~v′1i −
~v′2i|

=
| Ie

m1
+ Ie

m2
|

| Ic
m1

+ Ic
m2
|
=

Ie

Ic
.

Proving the equivalence between the def-
initions. Answering the second question,
the advantage in using the definition ε = Ie

Ic

instead of e = |~va
r |
|~vb

r |
is that the first allows a

widely and complete overview of the sub-
ject, already relative speed is only an effect
of this definition. The physical condition
required in a perfectly elastic collision is the
equivalency between Ic and Ie and, in that
way, there is a symmetric relation between
force and time in both stages. If there is
symmetry, the force exerted by the spring
is the same in both stages reestablishing
the kinetic energy of the system. In Fig. 2
is shown the graph F(t) at three different
stages of collision: before, in the maximum
compression and, in the maximum expan-
sion. In a perfectly elastic collision, the
lines corresponding to the compression and
expansion stages are equal, as well as the
impulses too. It is important to emphasize
that independent of the relation between
force and time, e.g., linear or nonlinear, the
collision always will be perfectly elastic,
since there is no difference of F(t) in both
stages.

Indeed, this symmetry is difficult to
find in real collisions. For example, we can
find articles[5, 6, 7] showing experimentally
the measurements of forces versus times in a
collision for a set of objects. We sketch three
possible configurations of Fxd in Fig. 4, ac-
cording to the type of collision. In the per-
fect elastic collision, owing to the symmetry,
the lines are superposed, but for an inelas-
tic one, the line corresponded to the expan-
sion phase is below to the compression. This
difference produces a hysteresis curve and
the area between the lines is an indicative
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Figure 2: Force vs time at three different
stages of collision: immediately before the
impact, in the stage of maximum compres-
sion, and in the maximum expansion. Note
that, in the perfectly elastic collision, the to-
tal impulse (gray array), after the collision,
is It = 2Ic.

of how inelastic the collision is. In the per-
fectly inelastic collision there is no restora-
tive force, so the losing energy is maximum
(as the area between the lines). Although
we mention only the relation between force
and position( not time as required to under-
stand the impulses in each phase,) we can
find the relation between force and time us-
ing the expression:

m
dv
dt

= f (x)

m
dv
dx

dx
dt

= f (x)∫ v

v0

mvdv =
∫ x

x0

f (x)dx

mv2

2
= U(x) + E.

Where U(x) =
∫ x

x0
f (x)dx and E =

mv2
0

2 . The

final solution is obtained rewriting v = dx
dt ,

thus we have:

m
dx
dt

= ±
√

2
m
[E−U(x)]

and by integrating

t− t0 =
∫ x

x0

±dx√
2
m [E−U(x)].

(7)

Finding the known relation between time
and position for the position-dependent
forces. It is common to use numerical inte-
gration to solve this equation owing to f (x).
For simplicity, we show the solution for the
linear case f (x) = −kx in the Fig. 3. An in-
teresting point to be stressed is that if U(x)
is different in the compression and expan-
sion stages (non-conservative fields), using
Eq. (7) we prove that f (t) is asymmetric in
the stages and, as mentioned before, the col-
lision is inelastic. For the cases where U(x)
is conservative, f (t) is symmetric in both
stages, assuring that the collision is perfectly
elastic as shown in the Fig. 3.

Note that in all cases, the total impulse
is zero since according to the third Newton’s
law, the forces acting on the bodies have the
same magnitude as shown in Fig. 3, but op-
posite directions. As the impulse is a vec-
tor, the sum of the impulses in the system is
zero while the total impulse in each object is
It = Ic + Ir.

4 Relationship between internal

forces and collisions

In this section, we highlight the necessity of
comprehending the types of energy dissi-
pated in inelastic collisions. In the literature

35/3/03 7 www.physedu.in
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Figure 3: Force vs position and force vs time
for the case of F = −kx in the perfectly elas-
tic collision (a) and perfectly inelastic one
(b). It is known that the solution of the dif-
ferential equation m d2x

dt2 = −kx, using appro-
priate initial conditions, is x(t) = sin(ωt).
Note that in this figure we shown the mag-
nitude of the force for the each object , but
the directions are oppositive (third New-
ton’s law).

Figure 4: force vs position for three different
types of collision. In the perfect elastic, the
curves are superposed; in the inelastic one,
we see the asymmetry between the force in
the stages (hysteresis); and in the perfectly
inelastic, the restorative force is zero.

or in a typical lesson in the collision study,
we learn that the natural candidates for the
lost energy are the friction, sound, heat and
so on. It gives us an idea that we can always
attribute to all types of energy a contribution
to the lost mechanical energy without trying
to understand the relation between the
types of objects involved in a collision and
its respective types of energy associated.
The first example is illustrated in Fig.(5)(a).

Figure 5: Two examples of the perfectly in-
elastic collision. In (a) the project collides
with a block. In (b) the object is launch in
a hole inside the block without drilling it.

A projectile with initial speed v0 collides
with a block at the rest. After the impact, the
projectile sticks together with the block with
speed v f . This example is common in the
literature and always be present either as
an example or exercise about the perfectly
inelastic collision. The problem is when this
example is not discussed appropriately. The
region deformed by the projectile represents
the spring compressed in our example,
but due to the material proprieties of the
block, the deformation caused by the impact

35/3/03 8 www.physedu.in
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does not return to the initial condition thus
its deformation is definitive, in this sense
the word perfectly inelastic can be better
understood and it is more close to our
intuition about the concepts of elastic and
inelastic proprieties. More precisely, the
elasticity is related to the capacity of the
object in reproducing the same behaviour
in the expansion phase in related to the
compression one. Nevertheless, a question
stays without an answer, where is the lost
energy? The answer is that the deformation
created by the projectile is lasting. In terms
of molecular structure, the rearrangement
of the molecules due to impact provokes
an increase in its internal energy and some-
times this sort of energy cannot be available
after an impact. The molecules before the
impact are arranged according to its intrin-
sic internal structure; after the collision, the
new rearrangement was possible thanks to
the energy stored in the collision. In some
cases we can offer an add energy to release
this energy stored, for instance, we see often
that a collision between two cars is almost
perfectly inelastic, the deformation is lasting
but, in some cases, when we try to pull the
car bodywork damage with an intention to
return to its initial configuration, we hear a
”sudden snap” due to the release of energy
stored.

The example is shown in Fig. 5 repre-
sents the same process described in (a) but
in this time, the object is launch in a hole
inside the block. The intention here is to

create a situation where the object does not
drill the contact area. In this case, the object
slides in a friction surface until it reaches
the center of mass velocity. As the example
in (a), the collision is perfectly inelastic,
but in this time the lost energy is due to
the friction on the surface. Microscopically
this energy is dissipated because in the
interface between the surfaces there are a
lot of intermolecular forces (e.g, Van der
Walls force, dipole-dipole interactions, etc.)
and when the surfaces slide between them,
the energy required for breaking these in-
teractions is absorbed through of the kinetic
energy of the system. Another contribution
to the loss of energy comes from the in-
crease in the vibrational energy (heat) of the
molecular interface. Both types of energy
consumed are irreversible, nevertheless it
is important to underscore that when we
say that a collision is inelastic, it means that
the system absorbs part of the energy that
cannot be returned in the form of the kinetic
energy. When we priority to evaluate just
one type of energy (kinetic), we exclude
a whole set of collisions(inelastic), where
part of the energy is stored in the internal
structure in the form of internal energy,
but when we take into account it; the total
energy, after collision, is the same as it was
before. It is important to stress this fact
because the students can think that the
principle of momentum conservation is
more universal that the principle of energy
conservation. This misunderstood is due
to the fact that in all collision the momen-
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tum is conserved but ”kinetic” energy is not.

5 Conclusion

We show the importance of dividing the
study of the collision into two stages. Based
on the analysis of the interchange of mo-
mentum and energy in each one, it is possi-
ble to find what assumptions allow to iden-
tify the type of collision. We have seen that
the idea of elasticity is more related to the
capacity of the material in restoring the im-
pulse originated in the compression phase.
To support this concept, we have demon-
strated that the coefficient of restitution is
directly related to impulse and not with en-
ergy. As a result, the collision is perfectly
elastic when Ie = Ic and the kinetic energy is
conserved. In the same way, in the perfectly
inelastic collision, all impulse acquired in
the compression stage does not return to the
system. Assuming that the collision is per-
fectly elastic, due to the symmetry between
the impulses in both stages, we can easily
find the final velocities instead of solving the
system of equations common present in the
literature. We propose to replace the sec-
ond statement (conservation of energy), in
a perfectly elastic collision, by the conser-
vation of impulses in the stages. This new
statement implies that kinetic energy must
be conserved. Furthermore, the use of im-
pulse as criteria to classify the types of col-
lision is in line with the original intention
used to define the coefficient of restitution.

To the Referees for reading carefully the
manuscript and its contribution to the im-
provement of this article.
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Abstract 
 

In this experiment, we have generated tunable 

UV radiation (392.5-411.5 nm) using Type- I  

Sum Frequency Generation (SFG)  of  dye laser 

having tuning range 620-670 nm (DCM dye) and 

1064 nm from Nd:YAG laser in BBO crystal. 

Calculated values of phase matching angles with 

experimental results are also verified. In 

addition, the theoretically calculated values of 

angular and spectral bandwidth of SFG in BBO 

crystal are experimentally verified. 

 

1. Introduction 

 
The science of optics at high intensities 

wherein the usual optical parameters of 

materials cannot be considered constant but 

become functions of the light intensity is 

called Nonlinear Optics. Laser sources can 

provide sufficiently high light intensities to 

modify the optical properties of materials 

which help to study the interesting new 

phenomena not seen with ordinary light such 

as the generation of new colours from  

 

monochromatic light in a nonlinear crystal, or 

the self-focusing of an optical beam in a 

homogeneous liquid [1]. The principle of 

superposition does not remain valid in 

nonlinear optics as in this regime    the    

parameters such as the dielectric constant 

depend on the electric field itself and so 

Maxwell’s equations become nonlinear and 

the superposition principle breaks down [2]. 

A very fascinating nonlinear optical effect is 

the phenomenon of Sum Frequency 

Generation (SFG) which is based on the 

second order nonlinear optical susceptibility 

of non-centrosymmetric crystalline materials 

in which two pump waves at frequencies ω1 

and ω2 incident on a suitable nonlinear 

medium and combine to generate a wave at 

the sum frequency ω3 = ω1 + ω2 . It can be 

established that for the macroscopic power 

flow between the waves ω1, ω2 and ω3 

(ω1<ω2<ω3) propagating through the 

nonlinear optical crystal, the conditions of 

conservation of energy and momentum must 

be fulfilled. Primarily the technological 
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significance of SFG is to generate coherent 

radiation at new frequencies that are difficult 

to achieve by other means. SFG can be used 

to monitor surface dynamics and many kinds 

of surface phenomena. 

Coherent tunable laser radiation in UV 

(ultraviolet) range has potential applications 

in various fields viz. security system, 

underwater communication, 

spectrophotometry, photo chemotherapy, 

material processing, astronomy, fine 

resolution photolithography etc. Here phase 

matching aspect of the Beta-Barium Borate 

(BBO) crystal is presented for generation of 

tunable UV laser radiation covering 392.5-

411.5 nm by Type-I SFG technique.  

2. Characteristics of BBO  

Borate group crystals have several excellent 

nonlinear properties for generation of UV 

even VUV laser radiation. Beta-Barium 

Borate (β-BaB2O4 or BBO) is a high quality 

negative uniaxial nonlinear crystal 

transparent in the range ~ 0.19 - 3.2 μm and 

belongs to the 3RC group in 3m point group. 

The unique features of BBO that makes it 

suitable for various nonlinear optical 

applications include wide transparency, a 

large temperature tolerance, low absorption, 

adequately large effective nonlinear 

coefficient (2pm/V), moderate birefringence 

for phase matching and excellent optical 

homogeneity. BBO has very high damage 

threshold (13 GW/cm2) which makes it 

preferable for the generation of UV laser 

radiation, since due to higher photon energy 

of UV radiation, crystals are easily damaged.  

The principal shortcoming with BBO is the 

low angular tolerance of 0.8 mrad cm, which 

requires a diffraction-limited beam for 

efficient frequency doubling [3]. It is used 

extensively as a material for frequency-

doubling,-tripling,-mixing of Dye lasers and 

applicable in second, third, fourth and fifth 

harmonic generation of  Nd:YAG laser. Also 

BBO crystal is more promising for Optical 

Parametric Amplifier (OPA) and Optical 

Parametric Oscillators (OPO). Furthermore, 

BBO crystal plays a significant role in 

research and development for advanced laser 

techniques, including all solid state wide-

tunable lasers, ultrafast pulse lasers. 

3. Objective 
 

Main aim of the experiment is to generate 

tunable UV radiation by using collinear 

phase-matched Type-I sum frequency mixing 

of the fundamental wavelength of Nd : YAG 

laser radiation and  Nd:YAG pumped dye 

laser (DCM dye) in BBO crystal. In this 

experiment phase matching angle (θm), 

angular bandwidth (Δθ) and spectral 

bandwidth (Δλ) of BBO crystal for SFG are 

experimentally measured and compared with 

the theoretical values. Obtained data help to 

understand the dependence of θm, Δθ and Δλ 

on different wavelengths within the tuning 

range (620-670 nm) of DCM dye.  

 

 

4. Phase Matching Angle 
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Effectively phase matching means the 

matching of the phase velocities of the 

desired wave and its driving nonlinear 

polarization wave in which the condition of 

energy-momentum conservation and 

maximum conversion efficiency are 

achieved. The condition of perfect phase 

matching is the special case where the 

wavevector mismatch, ΔK = 0.  

The phase-matching condition ΔK = 0 is 

often difficult to achieve because the 

refractive index in the range ω1 to ω3 (ω1< 

ω2< ω3) is an increasing function of 

frequency. The condition for perfect phase 

matching with collinear beams is  

          n1ω1 + n2ω2 = n3ω3                        (1)                                               

In order to achieve phase matching through 

the use of birefringent crystals, the highest 

frequency wave (ω3 = ω1 +ω2) is polarized in 

the direction that gives it the lower of the two 

possible refractive indices. While 

considering the case of Type-I SFG in a 

negative uniaxial crystal (like BBO), one 

chooses the input beams as ordinary waves 

and the generated beam an extraordinary 

wave (Fig. 1), so that the birefringence of the 

material can compensate the dispersion. 

Dispersion relation for the BBO crystal can 

be obtained by the Sellmeier’s equation : 

          n2 = A + 
𝐵

𝜆2+𝐶
 + Dλ2                   (2)                       

Sellmeier’s coefficients corresponding to the 

equation (2) are listed as shown in Table 1.   

By calculating refractive indices from 

Sellmeier’s equation corresponding to the o-

rays and e-ray for input wavelengths and 

tunable generated wavelength, phase 

matching angle (θm) is calculated 

theoretically.  

    

        

        Fig.1 : Type – I phase matching (ooe) 
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Table 1 :  Sellmeier’s coefficients corresponding to the Eq. (2) [4] 

           Coefficients 

Ray  

employed 

 

A 

 

B 

 

C 

 

D 

o-ray 2.7405 0.0184 - 0.0176 - 0.0155 

e-ray 2.3730 0.0128 - 0.0156 - 0.0044 

( λ, wavelength of the ray, is measured in μm) 

5. Angular Bandwidth (Δθ) 

 

In uniaxial crystal conversion efficiency 

(η) varies as the value of polar angle θ (the 

angle between the direction of 

propagation of the wave inside the crystal 

and the optic axis direction) varies from 

θm (Phase Matching angle). The angular 

acceptance angle (Δθ) is defined as the 

planar angle over which the magnitude of 

the wavevector mismatch for the 

parametric frequency conversion process 

is not greater than  ±
𝜋

𝑙
  . Theoretical value 

of Δθ (in radian) is given by,   

                                

      (3)                                      

Twice the 𝛿θ is the internal angular 

bandwidth (Δθ). 

6. Spectral Bandwidth (Δλ) 

 
In case of SFG, ΔK as well as η vary due 

to the variation of λ2 (λ2 being the 

wavelength of tunable dye laser). The 

spectral bandwidth is defined as the 

wavelength interval (here Δλ2) over 

which the magnitude of ΔK for the 

interaction is not greater than ±
𝜋

𝑙
. 

Theoretical value of Δλ is given by, 

                            

      (4)             

Twice the 𝛿λ2 is the internal spectral 

bandwidth (Δλ). 

7. Experimental Set-up  

A tunable laser is a laser whose 

wavelength of operation can be altered in 

a controlled manner. The broad 

absorption and fluorescent spectrum of 

dyes suggest a broad tunability of dye 

lasers. The schematic arrangement for the 

generation of tunable UV laser in between 

392.5 – 411.5 nm is shown in Fig. 2. 
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Nd : YAG Laser
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(620 - 670 nm)
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Fig. 2 : The schematic arrangement of the 

experimental set-up for the generation of tunable 

UV radiation. [G-Glass slide, P- Power/Energy 

meter, B – Beam combiner (Dichoric mirror), M 

– Dichoric Mirror, OA- Optic axis, F – 

Broadband Filter, S – CaF2 slide]  

In this experiment SHG of an electro - 

optic well characterised Q switched 

Nd:YAG laser having pulse repetition 

rate 10 Hz and pulse width 10 ns was used 

to pump the dye laser while residual 1064 

nm beam was used for SFG with dye laser 

radiation. 

 The tuning range of the DCM dye laser 

used in this experiment with frequency-

doubled Nd:YAG laser is 620 - 670 nm. 

The BBO crystal of length 7.3 mm and cut 

angle 30°  is placed on the precession table 

and is rotated in the horizontal plane 

properly to get the Type-I (o+o→e) phase 

matched position at different wavelengths 

within the tuning range of the DCM dye. 

The energy of all the interacting beams 

are measured.  In order to measure the 

energy of the incident laser beams, a 

known fraction of the beam is directed to 

a Scientech Energy / power meter having 

calibration factor 2V/J using a glass slide. 

The output energy is measured by using 

an energy meter bearing calibration factor 

140.6 V/J which is connected to the 

oscilloscope.        

8. Results and Discussions  

The theoretical and experimental values of 

phase matching angle (θm) are shown in 

Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 :  Verification of phase matching angle 
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Input 

wavelengths (in nm) 

Generated 

wavelength (in nm) 

Phase matching angle (θm) 

(in degrees) 

λ1 λ2 λ3 Theoretical Experimental 

622 392.5 28.62 27.23 

635 397.6 28.33 26.84 

642 400.4 28.18 26.98 

646 401.9 28.08 26.65 

651 403.8 28.98 27.07 

658 406.5 27.84 27.05 

666 409.6 27.67 26.57 

671 411.5 27.57 26.36 

 

In this experiment, tunable UV laser 

radiation in the range 392.5-411.5 nm is 

generated employing BBO crystal by 

Type-I sum frequency mixing. A graph is 

plotted against θm vs λ2 to show the 

difference between theoretical and 

experimental values of θm as exhibited in 

Fig. 3. The smooth curve is obtained by 

employing the theoretical values using the 

Sellmeier’s coefficients whereas the 

small triangles are the experimental 

points. The graph reveals that the 

corresponding value of θm measured 

experimentally is less than the theoretical 

value by 1o– 2o approximately. This is due 

to the fact that the Sellmeier’s dispersion 

relation formulated in Eq.(2) based on the 

measured refractive index of the crystal 

covering the transparent  

 

 

region. Introduction of a small 

noncollinear angle between the input 

beams separates the generated beam 

automatically without any additional 

filter. Here we assume collinear phase 

matching instead of actual non collinear 

phase matching for the sake of simplicity 

of the calculation. Thus avoiding the 

effect of noncollinear angle  between the 

input λ1 and  λ2 beams is a principal cause 

of variation in theoretical and 

experimental values of  θm.  Another 

possible explanation for the discrepancy 

are the non uniform distribution of the 

input beam intensity over the cross 

section and lack of perfect phase 

matching for all the direction of laser 

beam. Other reason of the observed shifts 

is mainly due to a systematic error 

resulting from the small orientation error 

in the precession table. 
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Fig.3 : Comparison of theoretical and experimental values of phase matching angle (θm) 

 

 Further the theoretical values of Δθ and 

Δλ are obtained by employing Eq. (3) and 

(4) which are 0.76 mrad and 0.53 nm 

respectively. The experimental values of 

Δθ and Δλ are greater than the 

corresponding theoretical values. 

The difference in values is mainly due to 

avoiding beam divergence during 

calculation and the uncertainty of crystal 

cut. 

9. Conclusion 

We have generated tunable UV radiation 

(392.5 –411.5 nm) by the collinear 

critically phase-matched Type-I SFG of 

tunable dye laser radiation in BBO 

crystal. From the experimental results it is 

observed that with the increase of 

wavelength the phase matching angle (θm) 

is decreased as predicted by theoretical 

results. In addition, there is a good 

agreement between the theoretical and 

experimental values of Angular 

Bandwidth (Δθ) and Spectral Bandwidth 

(Δλ). 
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When an AC voltage to a tube light fixture,  the
voltage passes through the choke, the starter and
the filament of the tube. 
The filament light up and instantly warm up the
tube. The starter is made up of a discharge bulb
with  two electrodes  next  to  it.  When  electricity
pass through it an electric arc is created between
the  two  electrodes.  This  creates  light.  However,
the heat from the tube causes one of the electrode
Ca bimetallic  strip  to  bend making contact  with
the  other  electrode.  This  stops  the  charged
particles  from  creating  the  electrical  arc  that
created light. However now that the heat from the
light is gone, the bimetallic strip cools and bends
away from the electrode, opening the circuit again.
At this  point the ballast  or choke “Kick’s back”
it’s stored current,  which again pass through the
filament and ignites the tube light once again. 
If  the  tube  does  not  sufficiently  charge  up,
subsequent kicks are delivered by the chock due to
rapid switching of the starters. So that finally the
tube strikes. 
A common problem associated with these types of
fixtures is humming or buzzing the reason for this

lies in the loosely fitted choke on the fixture
which vibrates in accordance with the 50 or
60  Hz  frequency  of  our  AC  mains  and
creates a humming sort of noise. Tightening
the  chokes  screws  may instantly  eliminate
the problem. 
In the present choke starter is absent, when
AC  voltage  is  applied  to  the  tube  light
fixture as shown in figure 1 certain amount
of voltage is dropped by the 100 watts lamp
seriously connected to  this.  The remaining
voltage is rectified by the bridge rectifier the
capacitor  are  used  to  filter  the  ripple
compounention  rectified  voltage.  Thus  the
pure DC voltage is across the tube filament.
The  bulb  will  grow  brightly  and
continuously. By off the circuit the capacitor
in  the  circuit  starts  to  discharge,  so  the
circuit  is  difficult  to  on.  Connected  the
resistance parallel to capacitor to reduce the
time  content.  We  can  easily  on-off  the
circuit. In this circuit no hamming buzzing
starter flicker and noise. 

Advantages of the product: 
1. Cost is less
2. No transformer 
3. No flicker 
4. No starter 
5. No noise 
6. No hamming 
7. No buzzing 

8. Power con is only 25 watts 
9. 25 watts power equal to 40 watts 
10. Low power loss 
11. Low heat loss
12. Instant-starting 
13. Cheap and best 
14. Power saving 
15. Good performance 
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Figure 1: New Circuit for Electronics Choke for Tubelight

35/3/5                                                               2                                                       www.physedu.in



Physics Education                                                                                                       July - September 2019  

 

35/3/6                                                                1                                                       www.physedu.in 
 

Dielectric Properties of Contaminated and Reclaimed 

Dry Soils at Radio Frequencies 

Nima P. Golhar1 and Pravin R. Chaudhari2 

1Department of Physics 
Nanasaheb Y. N. Chavan Arts, Science and Commerce College,  

Chalisgaon. Dist- Jalgaon. 424101, India. 
 

2Department of Physics 
Z. B. Patil College,  

Dhule. Dist- Dhule.424002, India. 
 

nima.golhar@rediffmail.com 
 

Submitted on 09-01-2019 
 

Abstract 
 

In present study dielectric properties of 
contaminated and reclaimed soils were studied. 
The contaminated soil samples were collected 
from ten different soil contaminated sites of 
North Maharashtra region. The Soil samples were 
analyzed for physical and chemical properties. 
Then they are reclaimed with the help of 
Compost, Urea, Single Super Phosphate and 
Potash according to suggestions given by 
agricultural experts. The dielectric constant (ɛ') 
and dielectric loss (ɛ'') of contaminated and 
reclaimed soil samples are measured in 
frequency range 20 HZ to 1 MHz using automated 
LCR meter at 0% (dry) moisture content. The 
dielectric constant (ɛ') and dielectric loss (ɛ'') of 
contaminated and reclaimed soil samples show 
decrease with increasing frequency. The 
Dielectric constant and Dielectric loss of all soil 
samples rapidly decreases from frequency 20 Hz 
to 10 kHz and from frequency 10 kHz to 1 MHz 
decrease slowly. From this study it is also 
observed that  
 

 
 
the Dielectric constant of soil samples decrease 
after reclamation of contaminated soil samples. 

 
1. Introduction 
 

Many researchers are working on study of 

dielectric characteristics of soils, rocks and 

contaminated soils at microwave frequencies and 

also at radio frequencies (1, 2, 3, 6,7,8,10,11 and 

12). The precise dielectric study of earth 

constituents at high frequency radio wave or at 

microwave frequencies is required for their use in 

planning ground penetrating radar survey(2). The 

objectives of present research work are to provide 

the detailed ground truth experimental data on the 

dielectric properties of different types of 

contaminated and reclaimed soils from North 

Maharashtra region, to measure moisture content of 

the soils and to understand contamination and 

reclamation of the soils. 
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2.  Materials and Method 
 

2.1 Sample preparation: The contaminated soil 

samples were collected from sites contaminated 

due to chemical factory, oil mill, sugar factory, 

textile mill etc. of North Maharashtra region.    The 

soil samples were first sieved by gyrator sieve 

shaker to remove coarser particles from the 

samples. The sieved fine particles were dried at 

temperature 1100C for about half an hour to remove 

any trace of moisture completely. This dry sample 

was referred as dry base (0% moisture content). 

The Soil samples were analyzed for physical and 

chemical properties from Soil Testing Laboratory 

of Government Agricultural college, Pune (soil pH, 

Electrical Conductivity, Organic Carbon, Calcium 

carbonate, Nitrogen, Phosphorus, Potassium, Iron, 

Manganese, Zinc, Copper, Calcium, Magnesium, 

Particle Density, Bulk Density, Sand, Slit, Clay and 

Textural Class).Then they are reclaimed with the 

help of Compost, Urea, Single Super Phosphate and 

Potash according to suggestions given by 

agricultural experts. 

2.2 Pellet formation: The prepared soil samples 

are in powder form. We can’t measure capacitance 

of soil samples with LCR meter when the samples 

are in powder form. Hence the pellet of each soil 

sample is formed by using Hydraulic press machine 

which is available at Godavari foundation’s 

Engineering College, Jalgaon. Each sample i.e. 

pellet was coated on both side with air drying silver 

paste so that it behaved like a parallel plate 

capacitor. The pellets are inserted between the 

electrode plates of LCR meter to measure 

capacitance. The soil sample acts as dielectric 

medium of capacitor. 

2.3 LCR meter: The dielectric constant 

measurement set-up consists of testing cell and 

LCR meter. The soil samples are prepared in 

scientific manner. The prepared soil sample whose 

dielectric constant is to be measured is compressed 

into a test slab or disc at a given thickness so that it 

can be measured in a dielectric cell. A dielectric cell 

is a test fixture with two plates into which the 

sample (soil pellet) is installed for evaluation of its 

electrical properties. When it is connected to an 

LCR meter, the capacitance (C) measurement can 

be taken. 

 

 
 

Fig.1 Photograph of automated LCR meter setup for measurement of dielectric constant of contaminated and 

reclaimed soils

An auto balancing Wayne Kerr Ltd, model 

4100 (Figure 1) operating at frequency 20 Hz to 1 

MHz is used to measure the capacitance of the soil 

pellets. They provide a wide range of features and 

offer high performance. We can measure 

Impedance (Z), Phase Angle (Ө), Capacitance (C), 
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Dissipation Factor (D), Inductance (L), Quality 

Factor (Q), AC Resistance (Rac) and DC Resistance 

(Rdc) of the soil pellets by using this LCR meter. 

 

 

 

 

 

2.4 Formulae to be used: The Capacitance (C) and 

Dissipation Factor (D) of the soil pellets are 

measured with the help of LCR meter. By using 

following formulae Dielectric constant (ɛ'), 

Dielectric loss (ɛ'') and ac conductivity (σac) of soil 

samples were calculated (4, 5 and 10). 

    C = 
ɛ′ɛ0A

d
                 ------- (1) 

ɛ'' = D ɛ'  -------- (2) 

σac = ɛ0ɛ'ω tanδ -------- (3) 

 

Where C – Capacitance, ɛ' - Dielectric 

constant,ɛ0- Dielectric constant of free space, ɛ'' - 

Dielectric loss,A - Area of each plate, d – thickness 

of pellet, D – Dissipation factor, σac - ac 

conductivity, ω - angular frequency and tanδ- loss 

tangent or the dissipation factor D. 

 The dielectric constant is equivalent to 

relative permittivity. The ratio of energy lost to 

energy stored in a material is defined as the loss 

tangent or dissipation factor (11). 

 

3 Results and Discussion: 
 

 

Fig.2. Dielectric constant of 0% moisture content (MC) 
contaminated soils 
 

 

Fig.3. Dielectric constant of 0% moisture content (MC) reclaimed 
soils 

Fig. 2 and Fig. 3 show the variation of dielectric 

constants of dry or 0% moisture content (MC) 

contaminated and reclaimed soil samples at 

different frequencies respectively. The dielectric 

constants were measured in the frequency range 

from 20 Hz to 1 MHz for ten contaminated and ten 

reclaimed soil samples. For all soil samples it is 

observed that dielectric constant decrease with 

increase in frequency (1, 6, and 7). Dielectric 

constant decrease abruptly up to frequency 10 kHz 

and then it decrease slowly (1, 6, and 7). 
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Fig.4. Dielectric loss of 0% moisture content (MC) contaminated 
soils 

 

Fig.5. Dielectric loss of 0% moisture content (MC) reclaimed soils             

Fig. 4 and Fig.5 shows the variation of dielectric 

loss of 0% moisture content contaminated and 

reclaimed soil samples at different frequencies 

respectively. The dielectric loss is also measured in 

frequency range 20 Hz to 1 MHz. The variation of 

dielectric loss is same as variation of dielectric 

constant. The dielectric loss of contaminated and 

reclaimed soil samples in the radio frequency range 

20 Hz to 1 MHz is not very significant (6).  

 

 

 

 

 

          

Fig. 6 (a)                                                                      Fig. 6 (b) 

           

Fig. 6 (c)                                                                            Fig. 6 (d) 
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Fig. 6 (e)                                                                       Fig. 6 (f) 

             

Fig. 6 (g)                                                                          Fig. 6 (h) 

               

Fig. 6 (i)                                                                             Fig. 6 (j) 

Figure 6 (a) to 6 (j) shows the variation of 

dielectric constant of ten soil samples after 

reclamation. The difference in dielectric constant is 

not very significant after reclamation. The 

reclaiming materials compost, urea, potash and 

single super phosphate slightly affect on the 

dielectric constant of soil (6, 7 and 12). 
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Conclusion 

1. The dielectric constant (ɛ') and dielectric 

loss (ɛ'') of contaminated and reclaimed soil 

samples decrease with increasing 

frequency.  

2. The Dielectric constant and Dielectric loss 

of all soil samples decrease rapidly from 

frequency 20 Hz to 10 kHz while the 

decrease is slow in frequency range of 10 

KHz to 1 MHz. 

3. From this study it is also observed that the 

difference in Dielectric constant of soil 

samples is not very significant after 

reclamation of contaminated soil sample. 
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Abstract

The Energy Tensor Tµν
dust of a distribution of

incoherent charged dust is a sum of two con-

stituent Energy Tensors, viz., the Energy Tensor

Dµν of the dust taken as a flow of fluid, and

the Energy Tensor Mµν of the Electromagnetic

field created by the charges in the dust. The

first one is obtained by first writing down the

Equation of Motion of a perfect fluid, known

as Euler’s equation, and upgrading the same to

the 4-vector level. The second one is obtained

by writing down the Conservation of Energy

and Momentum in an Electromagnetic field

and combining them into a single equation for

the conservation of 4-momentum. It has been

shown that the 4-divergence of the first one is

equal and opposite to the 4-divergence of the

second one. This leads to ∇αTαµ
dust = 0, which

is the relation to be satisfied by all Energy

Tensors that can qualify to be the source term

in Einstein’s Field Equation for gravity in his

General Theory of Relativity.

1 Introduction

Several years ago we wrote an article in
this journal[1] titled “ Maxwell’s Stress Ten-
sor and Conservation Momentum in Elec-
tromagnetic Field”. That article was ad-
dressed to students and teachers in Classi-
cal Electrodynamics. We didn’t use the rela-
tivistic language at that time, and the vectors
and tensors employed at that time were or-
dinary vectors and tensors, one level lower
than 4-vectors and 4-tensors used in the con-
text of Relativity. Instead of calling these en-
tities vectors and tensors, we now call them
3-vectors and 3-tensors - thereby denying
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them the full status of respectability in the
parlance of Relativity.

The question now arises, can we not
raise the Maxwell’s 3-tensor T̂ (em) used at
that time to the next higher 4-level? In this
article we shall examine this possibility.

2 Stress Tensor and the Volume

Force Density

Let us briefly review how a stress tensor T̂
is introduced in general. Consider a mate-
rial medium, made up of solid, liquid or gas.
Imagine a volume V bounded by a closed
surface S carved out in the medium (Fig 1
a). Consider a surface element da = n da at
a point P on S. Here n is a unit outward nor-
mal on S at P. The infinitesimal stress force
vector on da is

dFn = T n da = T̂ · n da = T̂ · da. (1)

Here T n
def
= T̂ · n is the stress vector on

the surface at the point P. The stress force
Fs transmitted on the matter inside the vol-
ume V is the surface integral of the above in-
finitesimal stress force. The surface integral
is then converted into a volume integral us-
ing Gauss’s theorem[2].

Fs =
∫∫
S

T̂ (r) · n da =
∫∫∫

V

∇ · T̂ (r) d3r.

(2)
From this it follows that the stress ten-

sor T̂ distributed over a surface S is equiva-
lent to a volume force density fs, distributed

over the volume V enclosed by the same sur-
face and the two are related by the equation:

fs = ∇ · T̂ . (3)

Now imagine the same closed surface S
enclosing the same volume V. But now in-
stead of a material medium, the space is oc-
cupied by vacuum, a non-material medium
to which the ancients had referred to as
“aether”. There are incoherent charged
particles occupying a patch of this space
(Fig 1 b). 19th century scientists believed
that aether could experience the same kind
of stress that material media did, and
this stress could be transmitted to electric
charges and current inside a closed volume,
exactly the same way as in the case of reg-
ular matter. The stress tensor for the trans-
mission of electromagnetic forces is known
as Maxwell’s stress tensor.

Equation (3) forms the starting point for
the construction of Maxwell’s stress tensor.

3 Equations of Electrodynamics

The force density on a distribution of
charged particle and their currents is given
by the Lorentz force equation[3, 4]:

fem =
∂P
∂t

= ρE + J× B, (4)

in which P is the momentum of the charged
particles per unit volume, (E, B) are, respec-
tively, the electric and magnetic fields, (ρ, J)
are, respectively, the charge and current
densities. The (E, B) fields satisfy Maxwell’s
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Figure 1: Stress Force on a Volume V: (a) in a material medium, (b) in vacuum containing incoherent
charged particles.

equations[5]:

∇ · E = ρ/ε0; ∇× E = − ∂B
∂t ; (a)

∇ · B = 0; ∇× B = µ0(J + ε0
∂E
∂t ). (b)

(5)
The E and B fields are linked together by
their time derivatives. If however we set
∂
∂t = 0 in (5), line (a) will be the field equa-
tions for Electrostatics, and line (b) for Mag-
netostatics. They get separated out into sep-
arate compartments without any communi-
cation between them. It is relatively easy to
write the stress tensors for these two special
cases.

4 An important Identity

Construction of the stress tensor for elec-
trostatic field, magnetostatic field and time
varying electromagnetic field will be facili-
tated by the following identity[6].

∇ ·
[

AA− 1
2

A21̂
]
= (∇ ·A)A−A× (∇×A).

(6)

Before establishing the above identity
we shall need a standard formula[7]

∇(A · B) = A× (∇× B) + B× (∇×A)

+ (A ·∇)B + (B ·∇)A.

(7)

By setting B = A in the above formula and
get

∇
(

1
2

A2
)
= A× (∇×A)+ (A ·∇)A. (8)

We shall now prove the identity (6).
Proof:

∇ · (AA) =

(
el

∂

∂xl

)
· (eiej Ai Aj)

=
∂

∂xi
(Ai Aj)ej

=

{(
∂Ai

∂xi

)
Aj +

(
Ai

∂

∂xi

)
Aj

}
ej

= (∇ ·A)A + (A ·∇)A. (a)

∇ ·
(

1
2

A21̂
)
=

(
el

∂

∂xl

)
·
(

1
2

eiei A2
)

=
1
2

ei
∂A2

∂xi
= ∇

(
1
2

A2
)

= A× (∇×A) + (A ·∇)A. (b)

(9)
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The identity (6) follows when we subtract
Eq.(b) from Eq.(a).

Q.E.D.

Note that we have used
Einstein’s summation conven-
tion. That is, el

∂
∂xl

≡ ∑3
l=1 el

∂
∂xl

;

eiej Ai Aj ≡ ∑3
i=1 ∑3

j=1 eiej Ai Aj, etc.

5 Maxwell’s Stress Tensors for

the (E, B) Fields

(a) Maxwell’s Stress tensor for an Electrostatic
Field.

The stress tensor follows when we set E
for A in (6), and use the corresponding field
equations, by setting ∂

∂t = 0 in line (a) of (5):
∇ · E = ρ/ε0; ∇× E = 0.

f(e) = ρE = ∇ · T̂ (e), (a)

where T̂ (e) = ε0

[
EE− 1

2 E21̂
]

. (b)
(10)

(b) Maxwell’s Stress tensor for a Magnetostatic
Field.

The stress tensor follows when we set B
for A in (6), and use the corresponding field
equations, by setting ∂

∂t = 0 in line (b) of (5):
∇ · B = 0; ∇× B = µ0J.

f(m) = J× B = ∇ · T̂ (m), (a)

where T̂ (m) = 1
µ0

[
BB− 1

2 B21̂
]

. (b)
(11)

(c) Maxwell’s Stress tensor for an Electromag-
netic Field.

Now let us see what happens when we
define

T̂ (em)
def
= T̂ (e) + T̂ (m)

= ε0

[
EE− 1

2
E21̂
]
+

1
µ0

[
BB− 1

2
B21̂
]

,

(12)

and use Maxwell’s equations (5). Note that
1

µ0
= ε0c2.

We shall do the work in two stages:
(i) set E for A in (6), and use line (a) of (5);
(ii) set B for A in (6), and use line (b) of (5).

∇ · T̂ (e) = ∇ · ε0

[
EE− 1

2 E21̂
]
= ε0 [(∇ · E)E− E× (∇× E)]

= ρE +
{

ε0E× ∂B
∂t

}
(a)

∇ · T̂ (m) = ∇ · 1
µ0

[
BB− 1

2 B21̂
]
= 1

µ0
[(∇ · B)B− B× (∇× B)]

= −B× (J + ε0
∂E
∂t )

= J× B +
{

ε0
∂E
∂t × B

}
. (b)

∇ · T̂ (em) = (ρE + J× B) +
{

∂
∂t (ε0E× B)

}
. (c)

(13)
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There are extra terms, for which we
have use “braces” {...} for emphasis, that
have come as a surprise, because they did
not appear in Eqs.(10) and (11). The ex-
tra term in the line (c) of the above equa-
tions represents Field momentum, just as the
first term represents Mechanical momentum
(i.e., the momentum of the charged parti-
cles.) See Eq. (4).

In order to understand this term we
have to take a look at Conservation of En-
ergy and Momentum in an Electromagnetic
field, which we have taken up in Sec. 8.

6 4-vectors

We are now entering the domain of
Minkowski’s Space Time[8] (MST). We shall
familiarize the reader with our conventions
and symbols, as outlined in a previous
article[9].

Corresponding to a 3-vector A there
will be a 4-vector

−→
A = −→eµ Aµ, where Aµ =

(A0, A) = (A0, A1, A2, A3), and {−→eµ ; (µ =

0, 1, 2, 3)} are the base vectors of the MST.
We are taking the time component as the
0-th component and the space components
as (x, y, z) = (1, 2, 3) components of the 4-
vector, and adopting the signature (+ - - -),
as implied by Eq. (15).

Consider the motion of a point parti-
cle in Fig.2. At the lower part of the fig-
ure we have shown its Physical Trajectory C
in E3, the Euclidean 3-space. In the upper
part we have shown its World Line Γ in the
4-dimensional Minkowski space M4, sup-

pressing the Z axis. P (x, y, z) and Q (x +

dx, y + dy, z + dz) are two infinitesimally
close points on the trajectory C, reached by
the particle at times t and t + dt respectively.
The infinitesimal 4-displacement from ΘP to
ΘQ is

d−→r = −→eµ dxµ = (c dt, dr) = (dx0, dx1, dx2, dx3).
(14)

It is the “primordial” contravariant 4-vector
from which all other “truly” contravariant
4-vectors are generated, by multiplication
with scalars and differentiation. Contravari-
ant vectors are identified by superscripts for
each of their four components. The vectors
of mechanics we shall introduce soon are all
contravariant vectors.

The norm of the 4-displacement dxµ is

ds2 = c2 dt2− dr2 = c2 dt2− dx2− dy2− dz2

= (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2, (15)

and is therefore a 4-scalar. In the instanta-
neous rest frame (IRF) of the particle dr = 0,

and dt def
= dτ. Therefore,

ds2 = c2 dτ2, so that, dτ = ds/c, (in the IRF).
(16)

Since ds is a 4-scalar, i.e., invariant under all
Lorentz transformations, and c is a universal
constant, it follows that dτ is a 4-scalar.

The time interval dt is called the Lab time
between the events ΘP and ΘQ, because it is
measured by an observer at rest in the Labo-
ratory, while the particle under observation
is moving with the velocity u. The time in-
terval dτ, measured in the rest frame of the
particle, is called the proper time between the
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Figure 2: World line in M4.

same pair of events. The relation between
the two is given by the equation

dt = Γ dτ, where Γ =
1√

1− u2

c2

. (17)

There are two Lorentz factors one en-
counters while reading a chapter on Rela-
tivistic Mechanics[10]. One of them is the
boost Lorentz factor γ used in all Lorentz
transformations (of the coordinates of an
event, or in the Lorentz transformation of
the components of a 4-vector). The other
one is the dynamical Lorentz factor Γ, as de-
fined in Eq. (17). It is used in writing the
expression for 4-velocity, 4-momentum, 4-
force. See Eq. (18).

Let u be the velocity of a particle of rest
mass mo, p its momentum, F the force act-
ing on it, and E its total energy (mass en-

ergy + kinetic energy). The first three quan-
tities will have their 4-dimensional counter-
parts: 4-velocity, 4-momentum, 4- Force (or
Minkowski force).

We shall review/summarize the
relevant formulas to be needed in the
sequel[10].

−→
U = −→eµ Uµ = −→eµ

dxµ

dτ

= −→eµ Γ dxµ

dt = Γ(c, u). (a)
−→
P = −→eµPµ = mo

−→
U = moΓ(c, u). (b)

m = Γmo = relativistic mass; (c)
E = mc2 = energy;
p = mu = 3-momentum. (d)

∴
−→
P = m(c, u) =

(
E
c , p
)

. (e)

−→
F =

d
−→
P

dτ
=

(
1
c

dE
dτ

,
dp
dτ

)
= Γ

(
1
c

dE
dt , dp

dt

)
= Γ

(
Π
c , F

)
. (f)

(18)
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In line (f) we have set dE
dt = Π (Capital-

pi). It stands for the power received by the
particle (same as energy received by the par-
ticle per unit time), due to (i) work done on
it by external forces: Π = F · u, and/or (ii)
by absorption of radiation or heat (thereby
changing its rest mass). A force F which
does not change the rest mass of the parti-
cle comes under case (i).

7 Minkowski Volume Force

Density

Now we consider a stream of incoher-
ent particles constituting a fluid in motion
(Fig 3). An infinitesimal volume δV (shown
colored in the figure), identified at the event
point (x) = (r, t) contains a collection of
fluid particles, which together possess a rest
mass δmo, a quantity of charge δq, and is
moving with the velocity u(r, t) with respect
to the Lab frame S. The volume occupied by
this collection of particles is δV in the Lab
frame S and δVo in the IRF So (so that δVo

is the proper volume). Lorentz contraction
of the dimension of this box along the direc-
tion of u changes its proper volume δVo to
the laboratory volume

δV =
1

Γ(x)
δVo; Or, δVo = Γ(x)δV. (19)

Let the 3-force on this collection be
δF(x), and the power received δΠ(x). Then
according to (18 f), the Minkowski force act-
ing on these particles (inside the proper vol-

ume δVo) is

δ
−→
F (x) = Γ(x)

(
δΠ(x)

c
, δF(x)

)
= Γ(x) δV

(
1
c

δΠ(x)
δV

,
δF(x)

δV

)
= δVo

(
1
c

δΠ(x)
δV

,
δF(x)

δV

)
.

(20)
We define Minkowski volume 4-force

density
−→
f (x) to be the Minkowski force per

unit proper volume - the 3-scalar density v (to
be pronounced as var-pi) as the power re-
ceived per unit lab volume, and 3-vector den-
sity f(x) as the 3-force per unit lab volume, as
explained below.

−→
f (x) ≡ lim

δVo→0

δ
−→
F (x)
δVo

(a)

v(x) ≡ lim
δV→0

δΠ(x)
δV

. (b)

f(x) ≡ lim
δV→0

δF(x)
δV

. (c)

(21)

It follows from (20) and (21) that

δ
−→
F (x) = δVo

−→
f (x), (a)

where,
−→
f (x) = −→eµ f µ =

(v

c
, f(x)

)
(b)

(22)
is the Minkowski volume 4-force density (al-
ready defined.)

An example of Minkowski volume
force density is the electromagnetic 4-force
density

−→
f em(x) shown in Eq. (36).

The 4-stress tensor is now defined to be
a symmetric tensor:

−→
T̂ (x) = −→eµ T µν(x)−→eν

of rank 2, satisfying the requirement:

−→
f ≡

−→
∇ ·
−→
T̂ ⇒ f µ(x) ≡ ∇αTαµ(x).

(23)
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Figure 3: Lab frame S and co-moving frame So in a streamline flow of particles.

In the above
−→
∇ is the 4- dimensional differ-

ential operator, having components:

−→
∇ =

(
1
c

∂

∂t
,∇
)
=

(
∂

∂x0 ,
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
.

(24)

We shall call
−→
T̂ the Minkowski 4-stress ten-

sor.

8 Energy and Momentum

Conservation in One Voice

There are two important theorems that are
used to state the conservation laws involv-
ing the Electromagnetic forces. We shall
state them as two theorems, because they
follow directly from Maxwell’s equations.

Consider the same stream of charged
particles subjected to electromagnetic forces
of their own creation. We shall apply en-
ergy and momentum conservation theorems
to this system of particles.

(A) The energy theorem, also called Poynting’s
theorem[11] is written as

E · J + ∂w
∂t

= −∇ · S. (25)

We have proved the above theorem in
Appendix A.1. We interpret the terms
appearing in the above equation as follows.
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E · J = work done by the field on the fluid particles per unit volume
= rate of change of mech energy (i.e, kinetic energy) per unit vol (a)

w = ε0
2 (E2 + c2B2) = field energy density (b)

S = ε0c2(E× B) = field energy flux density (c)
= Poynting’s vector

(26)

All densities alluded to in the context
of energy-momentum theorems (25) and
(29) are lab densities. See comments after
Eq. (20).

To justify the above interpretation we
integrate over a volume V bounded by a sur-
face S, and apply Gauss’s theorem, we get:

∫∫∫
V

(
E · J + ∂w

∂t

)
dv = −

∫∫∫
V

∇ · S dv

= −
∫∫
S

S · da.

(27)

LHS = rate of change of [mch energy + fld
energy] inside V.

RHS = - outflux of fld energy across S = influx
of fld energy across S.

Therefore,

rate of change of [mch energy + fld energy] per
unit volume = influx density of fld energy per
unit volume.

Our interpretation is justified.

(B) The momentum theorem[11]

We proved the following theorem,
which follows from Maxwell’s equations, as

Eq. (13 c).

(ρE+ J×B) +
{

∂

∂t
(ε0E× B)

}
= ∇ · T̂ (em)

(28)
We shall interpret the two terms on the

LHS as follows. The (E, B) field exerts a
force on the existing charge-current distri-
bution according the Lorentz force equation.
The first term represents this force fem, as
in Eq. (4), equal to the rate of change of the
momentum of the particles per unit volume
represented by P, which we shall refer to as
mechanical momentum density.

However, when these fields starts
changing with time they create a propagat-
ing em field which carries away energy and
momentum. The second term should repre-
sent the rate of change of this field momentum
density, to be represented by the symbol g.

g def
= ε0(E× B) =

S
c2 . (29)

Now we can rewrite Eq.(28) as

∂P
∂t

+
∂g
∂t

= ∇ · T̂ (em) (30)

To justify the above interpretation,
we shall integrate (30) over a volume V
bounded by a surface S and apply Gauss’s
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d
dt

(∫∫∫
V

P d3r

)
+ d

dt

(∫∫∫
V

g d3r

)
=

∫∫∫
V

(
∇ · T̂ (em)

)
dv

=
∫∫
S

T̂ (em) · n(r) da.
(31)

LHS = The Rate of change of [Mch momn-
tum + Fld momentum] inside V.

RHS = Total em force transmitted across S =
Influx of fld momentum across S

Hence, we interpret Eq.(31) as saying that

Rate of change of [Mch momentum + Fld mo-
mentum] per unit volume = Influx density of Fld
momentum per unit volume.

Our interpretation is justified.

Eqs.(25) and (30) are two equations ex-
pressing conservation of Energy and Mo-
mentum separately. The spirit of relativity
will demand that they should be integrated
into a single equation, unifying conserva-
tion of energy and momentum as a conser-
vation of 4-momentum. As a first step to-
wards this we rewrite Eqs.(25) and (30) in
such a way that the left side will represent
the charged particles and the right side the
em field.

E · J = −
[

∂w
∂t +∇ · S

]
. (a)

ρE + J× B = − ∂g
∂t +∇ · T̂ (em)

= −
[

∂g
∂t +∇ · Φ̂(em)

]
. (b)

(32)
In the last equation Φ̂(em) is the momentum
“outflux density”, equal and opposite to mo-
mentum “influx density T̂ (em).

Lines (a) and (b) of Eq. (32) represent
the time component and the space compo-
nents of one 4-vector equality.

The right side terms can be combined
into a 4-vector, which we shall define to be

the negative 4-divergence of a 4-tensor
−→
M̂,

namely the Maxwell’s Energy 4-tensor. This
tensor is an upgradation of the Maxwell’s
stress T̂ (em) defined in Eq. (13 c), except that
(−T̂ (em)), defined as Φ̂(em), forms the 3× 3
core of this upgradation. The 4× 4 compo-
nents of this tensor will be written as Mµν.
The time and space components of the new
4-vector are:

Time component: 1
c (

∂w
∂t +∇ · S) def

= ∇αMα0 (a)

Space component:
[

∂g
∂t +∇ · Φ̂(em)

]
k

def
= ∇αMαk; k = 1, 2, 3. (b)

(33)
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The subscript k on the left side implies
x, y, z components of the vector correspond-
ing to k = 1, 2, 3 respectively.

It is now easy to identify the 16 compo-

nents of the Minkowski Energy 4-tensor
−→
M̂

by taking a close look at Eqs. (33), and re-
calling the components of the operator ∇α

shown in (24). Eq.(33 a) yields the compo-
nents of the column 0, and Eq.(33 b) the com-
ponents of the columns k = 1, 2, 3. For help
see Appendix A.3.

Mµν(x) =

0 1 2 3
0
1
2
3


w Sx/c Sy/c Sz/c

Sx/c Φ11
em Φ12

em Φ13
em

Sy/c Φ21
em Φ22

em Φ23
em

Sz/c Φ31
em Φ32

em Φ33
em

 .

(34)
We have written Φ11

em, Φ12
em, ... to mean

Φxx
em, Φxy

em, ... respectively. Note that Mµν is
symmetric and traceless.

Mµν = Mνµ,
Mµ

. µ = 0.
(35)

Both properties are Lorentz invariant, i.e.,
same in all inertial frames.

The left side terms be combined into
another 4-vector, namely

−→
f em, the Lorentz

force density (per unit proper volume). It
can be expressed in terms of the Electromag-
netic Field tensor Fµν:

−→
f em(x) def

=

(
1
c

E · J, ρE + J× B
)

= −→eµ

(
1
c

Fµα Jα

)
, (36)

where Fµα, Jα are, respectively, the Electro-
magnetic Field 4-Tensor and the Electric cur-
rent density 4-vector. The above equality
follows from the definition of the field ten-
sor Fµν by its relation to the Lorentz force on
a particle of charge q, as has been shown in
Appendix A.4.

The conservation equations for 4-
Momentum, appearing disjointedly as (25)
and (30), will now join into the following
single 4-equation[12]:

1
c

Fµα Jα = −∇β Mβµ(x). (37)

9 Euler’s (Non-Relativistic)

Equation of Motion for a

Perfect Fluid

Our objective now is to construct the energy
tensor of the simplest “closed system”. The
term ”closed” in this context means that the
system is self-contained in all its dynamical
behavior, i.e., all dynamical processes take
place due to forces of interaction within the
system, there being no scope for exchange of
energy and momentum with anything out-
side. The total energy and the total momen-
tum of a closed system are therefore fully
conserved.

A closed system contains both mat-
ter and forces. The only kind of classi-
cal forces that can receive relativistic treat-
ment are electromagnetic forces. Before link-
ing up matter with electromagnetic forces,
we shall consider an oversimplified model
which consists of matter in the form of per-
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fect fluid - sometimes also called ”classical
fluid” - moving under the influence of in-
ternal and external forces whose origin we
need not specify at this moment. We shall
first lend a non-relativistic treatment to this
fluid, so that transition to a relativistic for-
malism becomes smooth in the next section.
The equation of motion of this perfect fluid
is known as Euler’s equation.

By perfect fluid we mean a fluid which
does not offer any viscous forces, which as
the reader knows, causes shear stresses in
the fluid. A perfect fluid, whether at rest
or in motion, can sustain only normal com-
pressive stresses inside, familiarly known as
“pressure”.

Let us consider a fluid in streamline
motion as previously illustrated in Fig. 3.
This fluid is characterized by a velocity field
u(r, t) and a fluid mass density σ(r, t), both
of which, in general, are unsteady fields, i.e.,
functions of t as well. The divergence of u is
called dilatation, a term we shall explain with
the help of Figs. 4(a),(b).

We have shown a stream of fluid in mo-
tion, inside of which we have marked out
a volume V at time t. Since the fluid par-
ticles on the surface S of V have different
velocities u(r, t), the boundary S not only
moves with the particles lying on it, but also
changes to a different shape S′ (shown with
broken line) at the time t+ dt. Consequently
V will also change to a different volume, say
V′.

Consider a film of fluid particles lying
over a tiny area δa centred at the point P.

These particles move a tiny distance u dt
from P to P′ in time dt. In this time a vol-
ume of fluid δv flows out from V, crossing
the tiny surface area da. The volume that
flows out is δv = [u · n]δa dt.

There are certain regions of S, say at P,
where u · n is positive, and the outflux (i.e.,
volume outflow) is positive. There are some
other regions, say, at Q, where u · n is neg-
ative, and the outflux is negative. The net
outflux of fluid volume is the surface inte-
gral of u over the boundary surface S. This
can be written as

dV = V′ −V =

∫∫
S

(u · n) da

 dt

=

∫∫∫
V

(∇ · u) d3r

 dt (38)

where we have used Gauss’s theorem to
convert the surface integral to a volume in-
tegral. We reduce the finite volume V to an
infinitesimal volume δV, thereby avoid inte-
gration, and get

d(δV) = [(∇ · u) δV] dt. (39)

Therefore[13],

1
δV

d(δV)

dt
= ∇ · u. (40)

In other words, ∇ · u is the rate of change of
volume per unit volume - or, more compactly
dilatation.

Now we take up equation of motion
proper. Consider a fluid element consisting
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Figure 4: Explaining fluid motion

of an infinitesimal collection of fluid parti-
cles moving along the stream (Fig. 4 c). At
time t its centre of mass is located at P where
it occupies a volume δV. The mass of this
element is δm = σ(r, t)δV, its momentum
δp = δm u((r, t)) and the force impressed on
it δF = f(r, t) δV, where f(r, t) represents the
volume force density. Applying Newton’s
Second Law of motion to this fluid element,

d
dt
(δp) = δF, (a)

or,
d
dt
[δm u(r, t)] = f(r, t) δV. (b)

(41)
Note that in the above equation d

dt rep-
resents convective derivative whose meaning
we shall explain with a more general exam-
ple. Let there exist a certain field f (x, y, z, t)
in the fluid (eg, temperature, fluid velocity,
pressure). The value of this field at the loca-
tion of the particle changes from f (x, y, z, t)
to f (x + dx, y + dy, z + dz, t + dt) as the par-

ticle moves with velocity u from the location
r = (x, y, z) at time t to take up a new loca-
tion r + dr = (x + dx, y + dy, z + dz) at time
t + dt. The net change is

d f =
∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz +
∂ f
∂t

dt

=

[
∂ f
∂x

ux +
∂ f
∂y

uy +
∂ f
∂z

uz +
∂ f
∂t

]
dt

=

[
u ·∇+

∂

∂t

]
f (x, y, z, t)dt

=

(
d f
dt

)
c

dt.

(42)

We have attached a subscript “c” to stress
that the time rates of the changes of phys-
ical quantities in motion are given by their
Convective Derivatives.

d f
dt
≡
(

d f
dt

)
c

def
=

(
u ·∇+

∂

∂t

)
f (x, y, z.t).

(43)
Using Eqs. (40) and (43), we establish a few
relations for future reference.
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d
dt
[σ δV] =

dσ

dt
δV + σ

d δV
dt

=

[{
∂σ

∂t
+ (u ·∇)σ

}
+ σ {∇ · u}

]
δV

=

[
∂σ

∂t
+∇ · (σu)

]
δV,

(44)
where σ represents any density function, of
which the mass density is particular exam-
ple.

In N.R. physics mass is conserved. Con-
sider the two terms in the first equality in
line (a). The first term, if positive, means in-
crease in mass in dV due to density fluctu-
ation. The second term, if positive, means
increase in mass due to volume fluctuation.
However, both of them cannot be positive.
Increase in one term is nullified by decrease
in the other. Together they represent zero
change. We get back the mass conservation
equation, known as continuity equation.

d
dt
[σ δV] = 0, ⇒ ∂σ

∂t
+∇ · (σu) = 0.

(45)

We shall convert Eq. (44) to a momen-
tum equation. Replace the scalar density σ

with the density of the x-component of mo-
mentum σux in the above equation, and get

d
dt
[(σux) δV] =

[
∂(σux)

∂t
+∇ · (σuxu)

]
δV.

(46)
The above relation holds for all the three
components ux, uy, uz. Multiplying the com-
ponents with ex, ey, ez and adding them to-

gether, we get

d
dt
[σu δV] =

[
∂

∂t
(σu) +∇ · (σuu)

]
δV

(47)
Going back to Eq. (41), noting that
δm u(r, t) = σu δV and using (47) we
get the general equation of motion for the
fluid:

∂

∂t
(σu) +∇ · (σuu) = f. (48)

Eq. (48) is the general equation of motion of
a fluid, to be referred to as the Euler’s Equa-
tion.

10 Relativistic Equation of

Motion for a Continuous

Incoherent Media

We shall upgrade the E3 version of the fluid
equation of motion (48) to M4. The starting
point of the former was (41a). The starting
point of the latter will be the M4 version of
this equation, i.e., Eq. (18 f) in which we set
−→
P → δ

−→
P and

−→
F → δ

−→
F .

d(δ
−→
P )

dτ
= δ
−→
F . (49)

Here δ
−→
P is the 4-momentum of the mass

content of the same fluid volume δV con-
sidered in Sec. 9, and δ

−→
F is the Minkowski

force on this volume.

We shall write the left and the right side
the above equation, using (18 b) and (22 b):
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δ
−→
P = −→eµ δpµ; so that

d(δ
−→
P )

dτ
= −→eµ

(
d(δpµ)

dτ

)
, (a)

δ
−→
F =

−→
f (x) δVo

= −→eµ ( f µ(x) δVo) . (b)

(50)

In line (b) we make use of the definifion of
−→
f given in (22).

Then the EoM (49) can be written in the
form:

d δpµ

dτ
= f µ(x) δVo

≡
(v

c
, f
)

δVo. (a)

Or,
d δpµ

dt
=
(v

c
, f
)

δV. (b)

(51)

To go from the line (a) to the line (b), we di-
vided each side with Γ, and recalled Eqs.(17)
and (19).

At this point let us be aware that mass
is not conserved in relativistic mechanics.
Mass conservation is violated, even if in-
finitesimally, in all real situations. Mass
of a system changes when chemical reac-
tions take place, when atoms absorb or
emit light, when a gas expands or is com-
pressed. Even for the perfect fluid, whose
dynamics was given a relatively simple non-
relativistic treatment in Sec 6.7, its mass is
continuously changing because of the work
being done by fluid pressure. This effect has
to be taken into consideration.

To make our task managable we shall
think of a moving fluid in which the con-
stituent particles - atoms, molecules, nuclei,
electrons - whatever they may be, remain in

their original ground states through the dy-
namical processes, and, hence, donot emit
or absorb light, so that their rest masses do
not change. The particles are charged, and
the electromagnetic field created by their
charges determine their Equation of Motion.

Let Fig. 3 represent a segment of this
flowing fluid. An infinitesimal volume δV
of this fluid, at the event point (x), posseses
a rest mass δm0, which is the sum of the rest
masses of all the constituent particles inside
δV. That is, δm0 = ΣδN

i=1moi, where δN is the
number of particles inside δV and moi is the
rest mass of the i-th particle in this infinites-
imal collection. Let σo stand for proper den-
sity of rest mass, which we define as:

σo(x) = lim
δVo→0

δm0

δVo
(52)

where δVo is the proper volume of the above
collection, i.e., volume measured in the in-
stantaneous rest frame. In contrast to σo, we
use another symbol σ to denote density of
relativistic mass in the observer’s frame S.
Seen from the observer’s frame, the above
collection of δN particles are now confined
within a smaller volume δV = δVo/Γ and
the relativistic mass of this collection is δm =

Γδm0. Therefore,

σ(x) = lim
δV→0

δm
δV

= lim
δVo→0

Γ δm0

(δVo/Γ)
= Γ2σo(x).

(53)
We shall work out the equations of motion
of the energy and momentum content of the
volume δV. The relativistic mass of this vol-
ume is:

δm = σ(x)δV. (54)
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According the formula (18 e) the 4-
momentum of the mass content within
this volume is δpµ = (δp0, δp) where

δp0 = δm c = (σ δV) c.
δp = δm u = (σ δV) u.

(55)

Let us now go back to the equation of
motion (51 b). We shall expand the left hand
side corresponding to µ = 0, using the time
component of δpµ as given in (55). With
some help from (44):

d δp0

dt
= c

d
dt
(σ δV) = c

[
∂σ

∂t
+∇ · (σu)

]
δV.

(56)
and corresponding to µ = i = 1, 2, 3 in a
similar way with help from (47):

d δp
dt

=
d
dt
(σu δV) =

[
∂(σu)

∂t
+∇ · (σuu)

]
δV.

(57)
The equations of motion (51 b) will then be-
come:[

∂(c2σ)

∂ ct
+∇ · (c σu)

]
=

v

c
. (a)[

∂(c σu)
∂ ct

+∇ · (σuu)
]

= f. (b)

(58)
Eq. (a) is the Energy equation and (b) is

the Momentum equation. As in the case of
the Electromagnetic field in Sec. 8, we shall
integrate these two disjointed equtions into
a single equation. Let us go back to (18 f),
which gives the Minkowski’s Equation of
Motion, and Eq. (18 f) a) which gives the
4-velocity Uµ in which u is the 3-velocity
space component: Uµ = Γ(c, u). Because
of the relation given in (53), the left sides of

lines (a) and (b) of Eq. (58) combine to form
a single expression: ∇β[σo(UβUµ)].

In the same way, thanks to (22 b), the
right sides of lines (a) and (b) of Eq. (58)
combine to form a single expression: f µ.
Therefore, the two lines of Eq. (58) now be-
come one line, a single relation between two
4-vectors:

∇β[σo(UβUµ)] = f µ. (59)

We now define the Energy Tensor of
the Incoherent Fluid (also called Incoherent
Dust) as[14]

Dµν def
= σoUµUν, (60)

It is now very easy to identify the 4× 4
components of Dµν:

Dµν = σoΓ2×
0 1 2 3

0
1
2
3


c2 cux cuy cuz

uxc u2
x uxuy uxuz

uyc uyux u2
y uyuz

uzc uzux uzuy u2
z



 .

(61)

The EoM, written as (59) takes the beau-
tiful comprehensive form:

∇µDµν = f ν. (62)

11 Energy Tensor for a System of

Charged Incoherent Fluid

We prepared the ground-work for this sec-
tion in Setion 8, in particular through
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Eq. (37). Before proceeding further we shall
recognize the following two volume 4-force
densities.
−→
f fld→mat = ( f 0

fld→mat, f fld→mat)

= 4-force per unit proper volume (u.p.v)

from the em fld on the particles in the dust.
−→
f mat→fld = ( f 0

mat→fld, f mat→fld)

= 4-force per unit proper volume (u.p.v)

from the particles in the dust on the em fld.
(63)

Let us now understand the effect of
above two 4-force densities.

Rate of change of matter 4-momentum per u.p.v

=
[

1
c E · J, ρE + J× B

]
= 1

c Fµα Jα =
−→
f fld→mat.

Rate of change of field 4-momentum per u.p.v

=
[

1
c

(
∂w
∂t +∇ · S

)
,
(

∂g
∂t +∇ · Φ̂(em)

)]
= ∇β Mβµ(x) =

−→
f mat→fld

(64)
We can now go back to (37) and rewrite

the 4-Momentum conservation equation
as[12]:

−→
f fld→mat = −

−→
f mat→fld. (65)

The above equation represents a gen-
eralization of Newton’s 3rd Law of motion
for the 3-forces of action and reaction to
the 4-forces of action and reaction between
a charged fluid media and its own electro-
magnetic field.

The EoM of the charged dust is given
by Eq. (62), in which the “force” f µ is now
the electromagnetic force on matter, i.e.,
f µ
fld→mat = f µ

em, as given in (36), coming

from the charge-current density Jµ present
in the matter itself. The EoM is now written
as

∇αDαµ(x) = f µ
fld→mat

= − f µ
mat→fld = −∇α Mαµ(x). (66)

The system consisting of the matter
(represented by Dαµ) and its own em fld
(represented by Mαµ) is now a closed system.
Its Energy Tensor is

Tαµ
dust(x) = Dαµ(x) + Mαµ(x), (67)

satisfying
∇αTαµ

dust = 0. (68)

In Newton’s theory of gravitation a
massive star, or a massive planet is the
source of Gravitation. In Einstein’s Gen-
eral Theory of Relativity mass is replaced by
energy. However, energy itself has no re-
spectable status, because energy is the time
component of 4-momentum. Hence Energy
is replaced by 4-momentum, and energy
densiy (analogous to mass density) by the
Energy Tensor, which is loosely the density
of 4-momentum. Since a star is an isolated
object, its energy tensor must have zero 4-
divergence. Eq. (67) gives the simplest ex-
ample of such an energy tensor, and Eq. (68)
tells us the desirable property of such a
source of gravitation.
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A Appendix

A.1 Energy Conservation in Electromagnetic Field

We shall prove Poynting’s theorem as given in Eq. (25) using Maxwell’s equations (5). The
electric current density appears in Eq.(5 b).

E · J = E · ε0c
{
∇× cB (r, t)− ∂E (r,t)

c ∂t

}
However, E ·∇× B = B ·∇× E−∇ · (E× B) (an identity)

Hence, E · J = ε0c2 {B ·∇× E−∇ · (E× B)} − ε0E · ∂E (r,t)
∂t

= ε0cB · (− ∂cB
∂t )−∇ · ε0c2(E× B)− ε0E · ∂E (r,t)

∂t
= − ε0

2
∂
∂t
(
E2 + c2B2)−∇ · ε0c (E× cB)

= − ∂w
∂t −∇ · S.

Q.E.D.

A.2 Examples of Lowering and Raising an index

Ex.1

Vµ = Vνgνµ =


V0

V1

V2

V3




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 =
(

V0, −V1, −V2, −V3
)

(A. 1)

Aµ = gµν Aν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

( A0, A1, A2, A3
)
=


A0

−A1

−A2

−A3

 (A. 2)

Lowering or Raising⇒ No change in the time component, sign change in the space compo-
nent.

Ex.2 Let

Fµν =


f 00 f 01 f 02 f 03

f 10 f 11 f 12 f 13

f 20 f 21 f 22 f 23

f 30 f 31 f 32 f 33

 (A. 3)
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be a contravariant 4-tensor. We shall lower only the first index µ , then only the second index
ν, then both indices µ, ν.

F. ν
µ = gµαFαν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




f 00 f 01 f 02 f 03

f 10 f 11 f 12 f 13

f 20 f 21 f 22 f 23

f 30 f 31 f 32 f 33



=


f 00 f 01 f 02 f 03

− f 10 − f 11 − f 12 − f 13

− f 20 − f 21 − f 22 − f 23

− f 30 − f 31 − f 32 f 33


(A. 4)

First index lowered⇒ No change in row 0. Sign change in rows 1,2,3.

Fµ
. ν = Fµαgαν =


f 00 f 01 f 02 f 03

f 10 f 11 f 12 f 13

f 20 f 21 f 22 f 23

f 30 f 31 f 32 f 33




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



=


f 00 − f 01 − f 02 − f 03

f 10 − f 11 − f 12 − f 13

f 20 − f 21 − f 22 − f 23

f 30 − f 31 − f 32 − f 33


(A. 5)

Second index lowered⇒ No change in col 0. Sign change in cols 1,2,3.

Fµν = gµαFα
. ν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




f 00 − f 01 − f 02 − f 03

f 10 − f 11 − f 12 − f 13

f 20 − f 21 − f 22 − f 23

f 30 − f 31 − f 32 f 33



=


f 00 − f 01 − f 02 − f 03

− f 10 f 11 f 12 f 13

− f 20 f 21 f 22 f 23

− f 30 f 31 f 32 f 33


(A. 6)

Both indices lowered⇒No change in {00, kj, jk} components. Sign change in {0k, k0} compo-
nents.

Ex.3 Trace of the contravarant tensor Fµν is defned as Fµ
. µ; sum over µ. Going back to (A. 5),

Tr{F} = Fµ
. µ = f 00 − ( f 11 + f 22 + f 33) = sum of the diagonal elements of Fµ

. ν. (A. 7)
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A.3 Components of Maxwell’s Stress 3-Tensor and Maxwell’s 4 Tensor, and their

Traces

Maxwell’s 3-Tensor was written in a short form in Eq.(13). We shall now write down the
3× 3 components of this tensor. The reader should verify them.

T xx
em = ε0

2 [(E2
x − E2

y − E2
z) + c2(B2

x − B2
y − B2

z)];
T yy

em = ε0
2 [(E2

y − E2
z − E2

x) + c2(B2
y − B2

z − B2
x)];

T zz
em = ε0

2 [(E2
z − E2

x − E2
y) + c2(B2

z − B2
x − B2

y)];
T xy

em = Φyx
em = ε0[ExEy + c2BxBy];

T yz
em = Φzy

em = ε0[EyEz + c2ByBz];
T zx

em = Φxz
em = ε0[EzEx + c2BzBx].

(A. 8)

We can now write the trace of the Maxwell 3-tensor.

Tr{Tem} = T xx
em + T yy

em + T zz
em = − ε0

2
(E2 + c2B2) (A. 9)

Maxwell’s 4-Tensor was defined by Eq. (33). We shall use the same equation to identify all
the components of Mµν(x).

From (33a): 1
c (

∂w
∂t +∇ · S) = ∇αMα0.

Or, ∂ w
c ∂t +

∂
∂ xj (Sj/c) = ∂M00

c ∂t + ∂
∂ xj Mj0 (sum over j).

Hence, M00 = w; Mj0 = Sj/c.

(A. 10)

In the follwing we shall write Φ11
em, Φ12

em, ... to mean Φxx
em, Φxy

em, ... respectively.

From (33b):
[

∂g
∂t +∇ · Φ̂(em)

]
k
= ∇αMαk; k = 1, 2, 3.

Or, ∂ cgk
c ∂t + ∂

∂ xj (Φ
jk
em) = ∂M0k

c ∂t + ∂
∂ xj (Mjk);

{
sum over j
k = 1, 2, 3.

Hence, M0k = cgk; Mjk = Φjk
em.

(A. 11)

We can now write all the 4× 4 components of Mµν(x).

Mµν(x) =

0 1 2 3
0
1
2
3


w cgx cgy cgz

Sx/c Φ11
em Φ12

em Φ13
em

Sy/c Φ21
em Φ22

em Φ23
em

Sz/c Φ31
em Φ32

em Φ33
em

 (A. 12)

Because of Eq. (29), cgk =
Sk
c , and the tensor is symmetric.
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The trace of the Maxwell’s 4 tensor follows from (A. 7) and (A. 9).

Tr{M} = Mµ
. µ = M00 − (M11 + M22 + M33)

= w− (Φ11
em + Φ11

em + Φ11
em)

= w + (T xx
em + T yy

em + T zz
em) = w− ε0

2
(E2 + c2B2) = 0.

(A. 13)

A.4 EM Field Tensor

The force experienced by a particle carrying an electric charge q is a velocity-dependent
force, called Lorentz Force, written as:

F = q(E + u× B) (A. 14)

where u is the velocity of the charged particle at the event point (x). The above equation
also serves as the definition of the the Electric field E and the Magnetic field B at the location
of the particle. Let us write the Lorentz factor for the particle’s velocity:

Γ =
1√

1− u2

c2

. (A. 15)

Substituting the Lorentz force (A. 14) in (18 f), the time and space components of the
corresponding Minkowski force Fµ are now obtained compactly as:

−→
F = −→eµ Fµ = qΓ

(
1
c

E · u, E + u× B
)

, (A. 16)

The above equation tells us that the Minkowski 4-force acting on a charged particle q is a
linear function of its 4-velocity, and therefore can be written as:

Fµ =
q
c

FµνUν. (A. 17)

and in an expanded form as:

F0 = Γ
c F · u = qΓ

c (Exux + Eyuy + Ezuz)

F1 = ΓFx = qΓ
c (Exc + cBzuy − cByuz)

F2 = ΓFy = qΓ
c (Eyc + cBxuz − cBzux)

F3 = ΓFz = qΓ
c (Ezc + cByux − cBxuy)

(A. 18)

Note that the second equality in Eq. (36) is obtained in the same way as Eq. (A. 17) is
derived from (A. 16).
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