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EDITORIAL 

 

  

 Let me begin by wishing the readers of 

Physics Education a happy new year.  
 

 A little before the turn of the new year, we 

were informed that a physical quantity of both 

fundamental and practical interest, the weight of 

one kilogram, has been redefined in terms of 

fundamental constants such as the Planck's 

constant. There was also some sentimentality 

associated with this change. The block of metal that 

served as the International Prototype Kilogram and 

maintained in a laboratory vault in Paris has served 

for nearly a century. With this change, all such 

standards based on physical objects have been 

dispensed with in favour of definitions in terms of 

fundamental constants of nature. This should not 

surprise a physicist since it is known that these 

constants do not change over long timescales, for 

most part. The new standard for kilogram has 

become dependent on the definitions of second and 

meter through the Planck's constant. After nearly 

130 years, the International Prototype Kilogram is 

set for retirement. 

 

  

 One more year is born and one more Indian 

Science Congress has taken place. This is an annual 

gathering of Indian scientists that started almost 

106 years ago. Irrespective of its merits in the 

contemporary context, it has unfortunately 

attracted attention for all the wrong reasons. It is 

indeed sad that some academics have attempted to 

pass off ancient literature as proof of the existence 

of advanced scientific knowledge.  There is a lot in 

ancient Indian science to be justifiably proud of, 

from the invention of zero to relatively recent 

Madhava-Gregory Series. On the other hand, the 

ancient Indian literature is undeniably a treasure 

trove of literary merit, stories of moral and practical 

value. Yet, we should avoid inventing non-existent 

achievements based on poetic interpretations. Even 

as we enjoy the best of ancient Indian literature, let 

us not forget to evaluate scientific claims through 

the rigorous process based on hard evidence. 

 

 

M. S. Santhanam 

Chief Editor 
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Abstract

For a pedagogical example, we take up Newton’s method

and energy eigenvalue problems for the Schrödinger equa-

tion. Newton’s method is systematically used to ob-

tain energy eigenvalues and energy eigenfunctions of the

Schrödinger equation.

The Schrödinger equation with the Woods-Saxon

potential is considered for an S-state. One solution is ob-

tained analytically by means of the hypergeometric series.

Another one is obtained numerically using the Runge-

Kutta method.

Because our approach makes the most of Newton’s

method in this paper, our calculations would have

pedagogical benefits for those undergraduate students

beginning to learn practical computations actively in

physics.

1 Introduction

As is well known, Newton’s method is very cel-
ebrated in mathematical analysis. However, it is
less well-known in practical learnings of physics and
chemistry. Therefore attempts to apply it to some top-
ics of them seem to be very interesting. In order to
use Newton’s method for exercises of Quantum me-
chanics, we take up an eigenvalue problem for the
Schrödinger equation with the Woods-Saxon poten-
tial, which is very popular in the textbooks of nuclear
physics, as a pedagogical example. We use two dis-
tict approaches to deal with this problem. One solu-

tion was obtained analytically with the help of the hy-
pergeometric series by T. Ishidzu [5]. Another one is
obtained numerically using the fourth-order Runge-
Kutta method [1]. We would like to stress that in both
approaches the Newton’s method plays key roles.

Motivations of this paper consist of four view-
points: to show how to solve a transcendental equa-
tion using Newton’s method without recourse to the
graphical method, to show that the solution to the
transcendental equation is fully compatible with the
numerical one obtained by the distinct method us-
ing the Runge-Kutta method, to explain explicitly that
Newton’s method plays key roles in obtaining these
two solutions, and to show clearly, thanks to the tran-
scendental equation, that when the diffuseness pa-
rameter of the Woods-Saxon potential gets closer and
closer to zero, energy eigenvalues, as expected, con-
verge to those of the 3-dimensional square-well po-
tential.

Tools for our approaches are explained briefly in
the following four sections after the introduction and
section 6 is devoted to numerical calculations and re-
sults.

Newton’s method explained in this paper has
been applied to the complex energy eigenvalues prob-
lems of kaonic atoms for the first time in the work of
M. Atarashi et al. [2] and the present paper originated
from their work.
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2 Startup

The radial Schödinger equation u(r) of a neutron in a
symmetrical Woods-Saxon potential V(r) is given by

d2u(E, r)
dr2

+
2m
h̄2 (E−V(r)− l(l + 1)h̄2

2mr2 )u(E, r) = 0, (1)

where the total wave function ψ(r) for the neutron is
represented by ψ(r) = r−1u(r)Yl,m(θ, φ), and V(r) is
given by

V(r) =
V0

1 + e
r−R

d
. (2)

In this paper we take the parameters in the Woods-
Saxon potential for convenience as

A = 208, Z = 82,
d = 0.67 fm, r0 = 1.27 fm,

V0 = (−51 + 33 (N−Z)
A )Mev, R = r0 A1/3 fm.

(3)

These parameters are adopted from Blomqvist and
Wahlborn [3] and give us

V0 = −44.01923076923077 MeV,

R = 7.5247400137547205 fm.

Besides, the mass of neutron mc2 = 940 Mev and h̄c =
197.3 MeV · fm are taken.

We note that for l 6= 0, equation (1) is easy to
solve numerically but impossible to solve analytically.
However, as Ishidzu calculated, only for l = 0 can
we solve the equation analytically. For this reason, in
this paper, we restrict our considerations to an S-state
(l = 0). When E < 0 we solve equation (1) numeri-
cally with condition that

u(E, r) = 0 at r = 0 and u(E, r)→ 0 for r → ∞. (4)

With these boundary conditions we can determine the
energy eigenvalues numerically.

3 Runge-Kutta method

In order to solve equation (1) numerically in case l = 0
we rewrite it as

d2u(E, r)
dr2 = g(E, r)u(E, r), (5)

where

g(E, r) = −2m
h̄2 (E− V0

1 + e
r−R

d
). (6)

If we put v(E, r) = du(E, r)/dr, equation (5) is
changed to a couple of the first-order differential
equations as follows:

du(E, r)
dr

= v(E, r), (7)

dv(E, r)
dr

= g(E, r)u(E, r). (8)

We apply the fourth-order Runge-Kutta method
[1] for solving the differential equations (7) and (8) nu-
merically. Let [a, b] stand for the interval where the
equations are solved and we divide it into N intervals
of width h each such that h = (b− a)/N. Then we put
r0 = a, r1 = r0 + h,· · · , rN = b and set ui(E) = u(E, ri)

and vi(E) = v(E, ri).
If we solve the recurrence relations resulting from

the Runge-Kutta method numerically with the initial
values u0(E) = u(E, r0) and v0(E) = u

′
(E, r0), we can

obtain every { ri, ui(E), vi(E)}(i = 0, 1, · · · , N).

4 Newton’s method

We find a solution x of a differentiable function f (x) =
0 numerically. Suppose x0 is an approximate solution
to f (x) = 0 and let δx0 be the correction to x0 such that
f (x0 + δx0) = 0, We expand f (x0 + δx0) in powers of
δx0 as

f (x0 + δx0) = f (x0) + δx0 f
′
(x0) + · · · . (9)

Keeping terms up to the first order in δx0,

f (x0 + δx0) = f (x0) + δx0 f
′
(x0) = 0. (10)

Then we obtain

δx0 = − f (x0)

f ′(x0)
. (11)

Accordingly we obtain, by letting x1 = x0 + δx0,

x1 = x0 −
f (x0)

f ′(x0)
. (12)
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If we replace x0 and x1 with xn and xn+1 respectively,
we obtain the recurrence relations

xn+1 = xn −
f (xn)

f ′(xn)
(n = 0, 1, · · · ). (13)

By iterating these recurrence relations, the sequence
{xn} is expected to converge to an exact solution.
When we use these relations, a choice of the starting
value x0 is important. If f (x) has an analytic expres-
sion, we can calculate the derivative f ′(x) analytically.
Usually, we can easily compute the derivatives nu-
merically using the following relations:

f ′(xn) =
f (xn + hn)− f (xn − hn)

2hn
(n = 0, 1, · · · ),

(14)

where hn are taken sufficiently small, and f (xn + hn)

and f (xn − hn) are numerically computed.

5 Ishidzu’s analytical solution for S-state

with the Woods-Saxon potential

In this section we explain briefly Ishidzu’s theory
along the lines of his paper [5]. Putting

r = Rρ, d = αR,

V0 = −v2
0h̄2/2mR2, E = −κ2h̄2/2mR2,

(15)

where α, v0, and κ are constants and furthermore
changing the variables by

x = − exp {(1− ρ)/α} = − exp{(R− r)/d},
u(E, r) = e−κρχ(E, x),

(16)

equation (1) becomes in case of l = 0

χ′′(E, x)+
1 + 2κα

x
χ′(E, x) +

α2v2
0

x(x− 1)
χ(E, x) = 0

(−e1/α < x < 0), (17)

which can be solved by means of the hypergeometric
series [1]. For the solution χ(E, x) to this equation to
take a finite value at x = 0 (r → ∞), χ(E, x) must be

χ(E, x) = F(µ, µ̄; 1 + 2κα|x), (18)

where F is the hypergeometric series [1], and we put

µ = α(κ + iκ
′
), µ̄ = α(κ− iκ

′
), κ

′
=

√
v2

0 − κ2. (19)

The other boundary condition
u(E, r) = e−κρχ(E, x) = 0 at r = 0 (x = −e1/α)

yields

F(µ, µ̄; 1 + 2κα| − e1/α) = 0. (20)

Since generally | − e1/α| � 1, the function F must be
continued analytically. By use of the relation between
the hypergeometric series [1]:

F(a, b; c|z)

=
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−z)−aF(a, a− c + 1; a− b + 1|1/z)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−bF(b, b− c + 1; b− a + 1|1/z),

(21)

where Γ is the Gamma function, equation (20) is re-
duced to

F(µ, µ̄; 1 + 2κα| − e1/α)

=
Γ(1 + 2κα)Γ(µ̄− µ)

Γ(µ̄)Γ(µ̄ + 1)

× e−µ/αF(µ, µ− 2κα; µ− µ̄ + 1| − e−1/α)

+
Γ(1 + 2κα)Γ(µ− µ̄)

Γ(µ)Γ(µ + 1)

× e−µ̄/αF(µ̄, µ̄− 2κα; µ̄− µ + 1| − e−1/α) = 0.
(22)

Since d = 0.67 fm, R = 7.52 fm, and | − e−1/α| =

1.34E− 5 � 1, we keep only the first term of the ex-
pansion in powers of (−e−1/α) of the hypergeometric
series F. Therfore, the function F on the right-side of
equation (22) can be approximated as unity to fairly
good approximation. Consequently equation (22) be-
comes

e−κΓ(1 + 2κα)

× { Γ(−2iκ
′
α)

Γ(µ̄)Γ(µ̄ + 1)
e−iκ′ +

Γ(2iκ
′
α)

Γ(µ)Γ(µ + 1)
eiκ′} = 0,

(23)

where we have used equation (19) and have replaced
the function F on the right-side of equation (22) with
unity.
If we set

θ = arg
Γ(−2iκ

′
α)

Γ(µ̄)Γ(µ̄ + 1)
, (24)
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where the notation arg represents the argment of a
complex number, equation (23) gives us significant re-
lations

cos(θ − κ′) = 0,

κ′ − θ = (n− 1
2
)π (n = 0,±1,±2, · · · ). (25)

With the help of equation (24), equations (25) become

κ′ + argΓ(2iκ′α) + argΓ(µ̄) + argΓ(µ̄ + 1)

= (n− 1
2
)π (n = 0,±1,±2, · · · ). (26)

As κ, κ′, and µ depend on E through equations (15)
and (19), the solutions En to these transcendental
equations (26) are energy eigenvalues.

6 Numerical calculations and the results

We consider Ishidzu’s approximate analytical expres-
sions (26) and rewrite them, thanks to the mathemati-
cal properties of the Gamma function [1], as

κ′ + argΓ(1 + 2iκ′α)− 2argΓ(µ)− arg(µ)

= nπ (n = 0,±1,±2, · · · ). (27)

we decompose equations (27) into two functions
arg(E) and h(n) (n = 0,±1,±2, · · · ) such that

arg(E) = κ′ + argΓ(1 + 2iκ′α)

− 2argΓ(µ)− arg(µ), (28)

h(n) = nπ (n = 0,±1,±2, · · · ). (29)

We recognize that expression (28) is not yet well suited
for our straightforward calculations. For that we de-
form it to a different form that is easy to calculate.
By use of the following equation [4]:

Γ(x + iy)
Γ(x)

= e−iγyx(x + iy)−1
∞

∏
m=1

[
1

1 + iy/(x + m)
]eiy/m,

(30)

where γ is the Euler’s constant, the argument of Γ(x +
iy) is easily given by

argΓ(x + iy)

= −γy− tan−1(
y
x
) +

∞

∑
m=1

[
y
m
− tan−1(

y
x + m

)].

(31)

Thanks to this equation, equation (28) can be de-
formed to a tractable form

arg(E) = κ
′
+ tan−1(

κ
′

κ
)

−
∞

∑
m=1

[tan−1(
2ακ

′

m
)− 2 tan−1(

ακ
′

ακ + m
)].

(32)

Keep in mind that for practical calculations of the val-
ues of the function arg(E), equation (32) is used and
its summation is carried out from m = 1 to m =

100000.
When α goes to zero in equation (32), equation

(27) becomes

κ
′
+ tan−1(

κ
′

κ
) = nπ (n = 0,±1,±2, · · · ), (33)

which is changed to

κ tan κ
′
= −κ

′
. (34)

This is the celebrated eigenvalue condition [6] of the
3-dimensional square-well potential (SQWP). From
this it is shown explicitly that Ishidzu’s expression
is a mathematical extension from the 3-dimensional
square well potential to the Woods-Saxon potential.

Now we can plot arg(E) and h(n) (n = 1, 2, · · · )
against E as in Figure 1, which shows us that the in-
tersection points satisfy equations (27) and give the
energy eigenvalues. When we want to obtain the ex-
act eigenvalues numerically, we need only to apply
Newton’s methods to the equation f (E, n) = 0, where
f (E, n) is defined by f (E, n) = arg(E) − h(n). From
Figure 1 we see the energies En of the intersections for
n = 1, 2, 3, and 4 are approximately equal to −40.0,
−29.0,−15.0, and−1.0 MeV respectively. These val-
ues can be adopted as the starting values for Newton’s
method.
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Figure 1: The increasing curve with respect to E repre-
sents arg(E) and horizontal lines correspond to h(n)
for each integer n = 1, 2, 3, and 4.

In what follows, using the Runge-Kutta method
we solve equations (7) and (8) over an interval [a, b]
(a < b), where a is very small and b is sufficiently
greater than R (Nuclear radius). This time, at an in-
termediate point r = c between r = a and r = b so
that a < c < b, we split the interval [a, b] into the
two intervals [a, c] and [c, b]. We solve numerically
the equations over each interval using the Runge-
Kutta method as stated in section 3. For the inter-
val [a, c] we solve forward from r = a to r = c with
the initial conditions u(E, a) ≈ al+1 and v(E, a) ≈
(l + 1)al (a ≈ 0, l = 0). For the interval [c, b] we solve
backward from r = b to r = c with the initial con-
ditions u(E, b) ≈ exp(−

√
2m
h̄2 (−E) b) and v(E, b) ≈

−
√

2m
h̄2 (−E) exp(−

√
2m
h̄2 (−E) b). Then let uin(E, c)

and vin(E, c) denote the numerical solutions at r = c
solved from r = a to r = c and let uout(E, c) and
vout(E, c) denote the numerical solutions at r = c
solved from r = b to r = c, and if we write the differ-
ence between their logarithmic derivatives as f (E, c),
then it is given by

f (E, c) =
vout(E, c)
uout(E, c)

− vin(E, c)
uin(E, c)

. (35)

Now we can obtain an energy eigenvalue if we
can determine a solution E to f (E, c) = 0, the continu-
ity of the logarithmic derivative of the wave function
at r = c. This is an easy task for Newton’s method.
We need to verify that the solution E of f (E, c) = 0 is
free of c.

Method Ishidzu Runge-Kutta

Approximate
energy (MeV)

-40.0 -40.0

Convergence
value(Mev)

-39.9600215 -39.9600216

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SquareWell
(MeV)

-40.9937792 −40.9937792†

Approximate
energy (MeV)

-29.0 -29.0

Convergence
value(Mev)

-29.4847423 -29.4847313

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SquareWell
(MeV)

-31.9986175 -31.9986175†

Approximate
energy (Mev)

-15.0 -15.0

Convergence
value(Mev)

-15.1906846 -15.1906682

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SquareWell
(MeV)

-17.3887057 -17.3887056†

Approximate
energy (MeV)

-1.0 -1.0

Convergence
value(MeV)

-1.2770512 -1.2770569

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SquareWell
(MeV)

no-solution no-solution

Table 1: The comparisons between Ishidzu formula
and the Runge-Kutta (R-K) method. For the R-K
method we adopt the parameters of the intervals ex-
plained in this section as a = 0.0 fm, b = 25.0 fm,
c = 6.0 fm, and N = 500 for convenience. Each
of the approximate energies are estimated from FIG.
1. The eigenvalues for the 3-dimensional square-well
potential are calculated using equation (33) and also
calculated from the R-K method using equation (35).
†When the R-K method is applied, to avoid the singu-
larity of the square-well potential at r = R, the follow-
ing recipes are taken: The endpoint c of the inner in-
terval [0, c] is shifted from c = R to c = R ∗ 0.9999999
; the endpoint c of the outer interval [c, b] is shifted
from c = R to c = R ∗ 1.0000001.
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r E1(MeV) E2(MeV)

1.0 -39.9600215 -29.4847423
0.1 -40.9795173 -31.9498045
0.01 -40.9936277 -31.9980921
0.001 -40.9937777 -31.9986123
0.0001 -40.9937792 -31.9986175
SQWP -40.9937792 -31.9986175

r E3(MeV) E4(MeV)

1.0 -15.1906846 -1.2770512
0.1 -17.3145854 no-solution
0.01 -17.3878786 no-solution
0.001 -17.3886974 no-solution
0.0001 -17.3887056 no-solution
SQWP -17.3887057 no-solution

Table 2: The energy eigenvalue dependence on the dif-
fuseness parameter d. r is defined as the diffuseness
parameter d divided by 0.67 fm (d = r ∗ 0.67 fm). The
subscript numbers of E correspond to the number n
in equation (27). En(n = 1, 2, 3, 4) are the calcuated
values for r using equation (27).

Finally, we present Table 1 to compare the results
calculated using Ishizdu’s approximate analytical ex-
pression with those calculated using the Runge-Kutta
method. From these two results we can emphasize
that the results obtained by these two distinct meth-
ods are in good agreement with each other. Under-
standably we use Newton’s method in order to obtain
the convergence value in each individual method.

Furthermore we calculate the energy eigenvalues
of the 3-dimensional square-well potential with the
same V0 and R in equation (3) for the S-state (l = 0)
using Newton’s method. We include them in Table 1
for comparison.

Besides, by using Ishidzu’s expression we
demonstrate explicitly in Table 2 that when the dif-
fuseness parameter d of the Woods-Saxon potential
approaches zero, the energy eigenvalues, as expected,
converge to those of the 3-dimensional square-well
potential.

7 Concluding remarks

We have demonstrated that Newton’s method is a
clearly powerful technique for solving eigenvalue
problems of quantum mechanics and also have en-
dorsed the validity of Ishizu’s analytical solution nu-
merically using the Runge-Kutta method.

Although most of books on quantum mechan-
ics are unfamiliar with Ishidzu’ analytic approximate
expression explained in this paper in contrast to the
eigenvalue problem for the 3-dimensional square-well
potential, it should be noted that Ishidzu’ analytic
approximate expression has a good accuracy and is
very interesting from the viewpoint of mathematical
physics.

In particular, we believe that most novice stu-
dents beginning to learn practical uses of quantum
mechanics can follow our calculations easily, which
may have pedagogical merits for those students. Our
approach may be of interest to those instructors who
would like to introduce applications of Newton’s
method to various fields into their courses.
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Abstract

In this paper we revisit the vibrational modes

of a circular membrane with different boundary

conditions. This we hope will serve as an

exercise to get more insight into the study of

percussion instruments. The displacement for

various modes are found for two initial velocities

and two initial displacements. The first three

modes are plotted for both cases. We found

that the different initial velocities and initial

displacements does not change the frequency or

shape of different modes. Such an exercise, we

believe, will help the students to understand the

importance of the concept of modes associated

with vibrations.

1 Introduction

The essential component in the sound pro-
duction of percussion drums is the vibration
of a circular membrane. When the drum

head is struck, the circular membrane vi-
brates in different modes. The basic equa-
tion governing the vibration of a circular
membrane is the wave equation, which is
given by [1]

∂2u
∂t2 = c2

(
∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2

)
(1)

where u = u(r, θ, t) is the displacement of
the membrane and the velocity of sound
wave c =

√
T
ρ where T is the tension on the

membrane and ρ is the uniform mass den-
sity. Using the separation of variable tech-
nique, the solution obtained is [2]

u(r, θ, t) =
∞

∑
m=1

∞

∑
n=0

Jn(kmnr) cos(nθ)

[amn cos(ckmnt) + bmn sin(ckmnt)] (2)

Here m and n are integers, where m rep-
resents the number of nodal circles and n
represents the number of nodal lines. There
are certain regions on the membrane where
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there is no motion or vibration. When the
non vibrating region is a circle it is called a
nodal circle and when it is a line, the same
is called a nodal line. Jn(kmnr) is the nth or-
der Bessel function where kmn is the wave
number and r is the radius. amn and bmn are
the constants to be determined. For an axis
symmetric circular membrane the displace-
ment u(r, θ, t) is independent of θ and then
we modify our wave equation (1) as

∂2u
∂t2 = c2

(
∂2u
∂r2 +

1
r

∂u
∂r

)
(3)

For axis symmetric membrane no nodal
lines are present and hence we fix our n = 0
and then equation (2) changes to

u(r, t) =
∞

∑
m=1

J0(kmr)

[am cos(ckmt) + bm sin(ckmt)] (4)

where am0, bm0 and km0 are redefined as am,
bm and km.

2 Values of the coefficients am

and bm

At time t = 0, we get the displacement of
the membrane from Eq (4) as

u(r, 0) =
∞

∑
m=1

J0(kmr)am

Let
u(r, 0) = f (r)

We have a theorem given in the book
“Fourier Series and Boundary Value Problems”
by James Brown and Ruel Churchill (pp 275,

theorem 1) [3] which states that when F(q)
is a continuous function in the interval 0 <

q < p and if αj are the positive roots of equa-
tion

J0(αj p) = 0

then the function F(q) can be written as a
Fourier-Bessel series

F(q) =
∞

∑
j=1

Aj J0(αjq)

where

Aj =
2

p2[J1(αj p)]2

∫ p

0
qF(q)J0(αjq)dq

Our drum has a radius R and we can define
an interval 0 < r < R. At R, the boundary
is fixed and there is no vibration. The radial
part of the solution in (4) at the boundary
becomes

∞

∑
m=1

J0(kmR) = 0 (5)

Then for that region by the above theorem

am =
2

R2[J1(kmR)]2

∫ R

0
r f (r)J0(kmr)dr

On differentiating u(r, t) in (4) with respect
to t we get

du(r, t)
dt

=
∞

∑
m=1

J0(kmr)

[−ckmam sin(ckmt) + ckmbm cos(ckmt)]

For t = 0, let du
dt = g(r) and we get

g(r) =
∞

∑
m=1

J0(kmr)ckmbm
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Using the theorem stated above, we get

bm =
2

ckmR2[J1(kmR)]2

∫ R

0
rg(r)J0(kmr)dr

For the equation (5), let the positive roots be
αm, then

kmR = αm

km =
αm

R
(6)

Thus we get

am =
2

R2[J1(αm)]2

∫ R

0
r f (r)J0

(αm

R
r
)

dr (7)

bm =
2

cαmR[J1(αm)]2

∫ R

0
rg(r)J0

(αm

R
r
)

dr

(8)
From the above equations (4), (7) and (8) we
get

u(r, t) =
∞

∑
m=1

J0

(αm

R
r
)
[

2
R2[J1(αm)]2∫ R

0
r f (r)J0

(αm

R
r
)

dr cos(ckmt)+
2

cαmR[J1(αm)]2∫ R

0
rg(r)J0

(αm

R
r
)

dr sin(ckmt)]

3 Defining Cauchy conditions

For a circular membrane, the initial dis-
placement indicates the shape of the drum
at initial time. If the initial parameters are
known, it is easy to find the parameters for
the system at a later time. This is achieved
by finding unknowns from the solutions de-
scribing the system using initial conditions
[4]. Initial conditions are also known as
Cauchy conditions. The value of particular
unknown function and appropriate number

of its derivatives are used to find the solu-
tion [5]. Since the wave equation is a sec-
ond order partial differential equation, dis-
placement and its derivative - velocity are
considered as initial conditions. We had al-
ready defined the initial displacement of the
membrane as f(r) and initial velocity as g(r)
and we choose three cases of boundary con-
ditions

3.1 Different choices of boundary

conditions

1. Case 1
f (r) = 0

g(r) 6= 0

When our initial displacement is zero,
the constants am are all zero. The com-
plete solution for vibration of axis sym-
metric circular membrane from equa-
tion (4) is

u(r, t) =
∞

∑
m=1

J0(kmr)bm sin(ckmt) (9)

2. Case 2
f (r) 6= 0

g(r) = 0

When the initial velocity is zero all bm

values are zero then from equation (4)

u(r, t) =
∞

∑
m=1

J0(kmr)am cos(ckmt) (10)

3. Case 3
f (r) 6= 0

g(r) 6= 0
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In this case am and bm values are non
zero and hence the complete solution is
equation (4) itself.

3.2 Different types of boundary

conditions

In our study we choose two different forms
of initial velocity functions

g1(r) = AJ0

(αmr
R

)
(11)

g2(r) = B (R− r) (12)

The 3D plot of two initial velocity functions
are shown in figure 1. Initial displacement

g1

g2

Figure 1: Initial velocity functions.

functions used in our study are [6]

f1(r) = C(R2 − r2)2 (13)

f2(r) = D(R− r)2 (14)

The constants A, B, C and D will be prop-

f1

f2

Figure 2: Initial displacement functions.

erly chosen to match the dimensionality. We
have chosen f1(r) and f2(r) such that they
satisfy boundary conditions, at r=R, f1(r) =
f2(r) = 0. The initial displacement func-
tions are plotted in figure 2.
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4 Mode determination using the

different initial velocities

Example 1
Let us take the first initial velocity

g1(r) = AJ0

(αmr
R

)
On substituting the function in Eq (8) we get

bm =
2

cαmR[J1(αm)]2

∫ R

0
rAJ2

0

(αmr
R

)
dr

Let
αmr
R

= x

So
αmdr

R
= dx

when r = 0, x = 0 and when r = R, x = αm.
We have the standard integral∫ a

0
zJ2

0(z)dz =
1
2

a2
(

J2
0(a) + J2

1(a)
)

On integration

bm =
A R

cαm[J1(αm)]2
[J2

0(αm) + J2
1(αm)]

We have from boundary condition

J0(αm) = 0

bm =
AR
cαm

(15)

u(r, t) =
∞

∑
m=1

AR
cαm

J0(kmr) sin(ckmt)

Maximum displacement is produced when
the drum is struck at centre. At r = 0 we
have J0(0) = 1 and hence our expression for
deflection of the membrane becomes

u(r, t) =
∞

∑
m=1

AR
cαm

sin(ckmt)

Using the equation (6) we have

u(r, t) =
∞

∑
m=1

AR
cαm

sin
( cαm

R
t
)

(16)

We have from Eq (4)

(1,0)

(2,0)

(3,0)

Figure 3: First three modes plotted for first ini-
tial velocity function.

ckm = ωm

Multiplying numerator and denominator
with R we get

ckm
R
R

= ωm
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and from Eq (6) we get

cαm

R
= ωm

So frequency is

fm =
cαm

2πR
(17)

Here c, αm and R are constants. From equa-
tion (17) it is clear that the frequency of dif-
ferent modes of vibration is independent of
initial velocity and initial displacement.

5 Calculation of amplitudes for

different modes of Timila

To verify the results obtained above, we will
apply them to a percussion drum largely
used in Kerala, called Timila[7]. Timila has
a long resonator body which is made of jack
wood. The instrument consists of circu-
lar membranes on both heads and are not
loaded. The drum does not give a sense of

Figure 4: A typical timila used In Kerala.

pitch but is used as a rhythmic drum. The

main strokes produced by the timila are ’tha’
and ’thom’. The instrument is played with
palms of both hands. The body of timila has
a length of 20.5 in and the diameter of the
drum is 6.5 in. When the drum is played, the
head vibrates in different modes and these
vibrations are transfered to the air molecules
in the resonator and the sound is produced.
The peculiar construction and playing style
adds beauty to the instrument.

We will find the frequency of modes of
circular membrane with following parame-
ters - R=0.082m (the radius of Indian rhyth-
mic drum timila [7]) and c=130.31m/s. The
values of αm, the positive roots of Bessel
function of order zero are taken from the
book by Enrique A. Gonzalez-Velasco [6].
The conventional animal membrane of tim-
ila drum head is nowadays replaced by my-
lar membrane. The value of mass density of
such a membrane is 0.26kg/m2 [8] and as-
suming the value typical tension applied as
4415N/m, the c is obtained as 130.31m/s.
From Eq (15) the amplitude depend on αm

and we had taken n=0 hence for various αm

we get various bm. The values obtained for
bm are tabulated below. The numerical cal-
culation of first mode is shown below with
A=0.1m/s and α1 = 2.4048. We get

b1 =
0.1× 0.082

130.31× 2.4048
= 2.6167× 10−5m
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Mode bm(m)

(1,0) 2.6167× 10−5

(2,0) 1.13995× 10−5

(3,0) 7.2717× 10−6

(4,0) 5.3366× 10−6

(5,0) 4.2145× 10−6

(6,0) 3.4822× 10−6

The displacements of first three modes are
plotted and given in figure 3. For vibra-
tion of circular membrane with applied ini-
tial velocity, frequency of the modes remain
same but the amplitude changes.
Example 2
For second velocity function

g2(r) = B(R− r) (18)

bm = B
2

cαmR[J1(αm)]2

∫ R

0
r(R− r)J0

(αmr
R

)
dr

(19)
We get bm after integration and simplifica-
tion as

bm = B
πR2H0(αm)

cα3
m J1(αm)

where H0(αm) is the Struve function of order
zero. Struve function is the solution of non
homogeneous Bessel equation and usually
found in integrals involving Bessel function.
Then we get

u(r, t) = B
∞

∑
m=1

πR2H0(αm)

cα3
m J1(αm)

sin
( cαm

R
t
)

For the same parameters as in example 1 the
values of bm are tabulated. The b1 value is
calculated with B = 1s−1, J1(αm) = 0.5192
and H0(α1) = 0.7497. The values of Bessel
function and Struve function are obtained

(1,0)

(2,0)

(3,0)

Figure 5: First three modes plotted for second
initial velocity function.

using online calculators. The other param-
eter values are same as example 1.

b1 = 1
3.14× (0.082)2 × 0.7497

130.31× (2.4048)3 × 0.5192

= 1.6823× 10−5m
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Mode bm(m)

(1,0) 1.6823× 10−5

(2,0) 6.41695× 10−7

(3,0) 3.1662× 10−7

(4,0) 7.5916× 10−8

(5,0) 5.8671× 10−8

(6,0) 2.2306× 10−8

The first three modes plotted for second ini-
tial velocity function are given in figure 4.

6 Mode determination using the

different initial displacements

Example 1
We have

am =
2

R2[J1(αm)]2

∫ R

0
r f (r)J0

(αm

R
r
)

dr

(20)
We have our first displacement function

f1 = C(R2 − r2)2. On substitution and in-
tegration we get

am = C
128R4 − 16R4(αm)2

(αm)5 J1(αm)

The deflection of the membrane struck at
centre is

u(r, t) =
∞

∑
m=1

C
128R4 − 16R4(αm)2

(αm)5 J1(αm)
cos

( cαm

R
t
)

We calculated the numerical value of a1 with
same parameter values as in example 1 and
2 in section 4 and the value of C is taken as
10m−3. So

a1 = 10
(0.082)4[128− 16× (2.4048)2]

(2.4048)5 × 0.5192

= 3.8406× 10−4m

(1,0)

(2,0)

(3,0)

Figure 6: First three modes plotted for first ini-
tial displacement function.

Mode am(m)

(1,0) 3.8406× 10−4

(2,0) 9.3199× 10−5

(3,0) −3.6736× 10−5

(4,0) 1.7886× 10−5

(5,0) −1.0147× 10−5

(6,0) 6.3707× 10−6
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the first three modes are plotted in figure 5.
Example 2

(1,0)

(2,0)

(3,0)

Figure 7: First three modes plotted for second
initial displacement function.

Now consider the second displacement
function f2 = D(R − r)2. On substitution
in equation for am, we get

am =
2D

R2[J1(αm)]2

∫ R

0
r(R− r)2 J0

(αm

R
r
)

dr

On integration we get

am = D
[

2πR2

(αm)2
H0(αm)

J1(αm)
− 8R2

(αm)3 J1(αm)

]
Here we get the complete solution

u(r, t) = D
∞

∑
m=1

cos
( cαm

R
t
)

[
2πR2

(αm)2
H0(αm)

J1(αm)
− 8R2

(αm)3 J1(αm)

]
(21)

We obtained the value of amplitude a1 with
same parameters as above and with D =

0.01m−1

a1 = 0.01
[

2× 3.14× (0.082)2

(2.4048)2
0.7497
0.5192

]

−0.01
[

8× (0.082)2

(2.4048)3 × 0.5192

]
= 3.094× 10−5m

Mode am(m)

(1,0) 3.094× 10−5

(2,0) 1.863× 10−5

(3,0) 4.082× 10−6

(4,0) 3.744× 10−6

(5,0) 1.500× 10−6

(6,0) 1.536× 10−6

The first three modes plotted are shown in
figure 6.

7 Modes with both Initial

displacement and initial velocity

In order to find the maximum displacement
for case 3, we choose same initial velocity
function and initial displacement function
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(1,0)

(2,0)

(3,0)

Figure 8: First three modes plotted for case 3.

as given in (11) and (14). For a circular mem-
brane struck at centre the complete solution
is arrived from equations (4), (16) and (21) as

u(r, t) =
∞

∑
m=1

D cos
( cαm

R
t
)

[
2πR2

(αm)2
H0(αm)

J1(αm)
− 8R2

(αm)3 J1(αm)

]

+
∞

∑
m=1

AR
cαm

sin
( cαm

R
t
)

In this case amplitude is the sum of am and
bm. The amplitudes of first six modes are
given in the table below.

Mode am + bm(m)

(1,0) 5.7107× 10−5

(2,0) 3.00295× 10−5

(3,0) 1.1354× 10−5

(4,0) 9.0806× 10−6

(5,0) 5.7145× 10−6

(6,0) 5.0182× 10−6

The first three modes are plotted in figure 7.

8 Conclusion

The circular membrane vibration is stud-
ied for different initial velocities and ini-
tial displacements. The amplitudes of first
six modes are found and the displacements
of first three modes are plotted. It is seen
that the mode shape remains invariant for
any applied initial displacement and veloc-
ity. The parameter that changes with the ap-
plication of initial displacement and veloc-
ity is the amplitude of vibration of modes.
This study once again show the importance
of modes in any vibration. We had assumed
that the density of the membrane as uni-
form. In future we aim to solve vibration of
membranes with non uniform densities.
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Abstract

Radioactive dice experiment is widely used as

a pedagogical tool to demonstrate the phe-

nomenology of radioactivity in classrooms. The

decay constants obtained in such experiments

are found to be consistently higher than the

values predicted by the exponential nuclear

decay law. It was suggested by some authors

that the discrepancy could be minimized by

using polyhedral dice having higher number of

faces. In this article, some analytical attempts

have been made to look for better numerical

formulae which could minimize the discrepancy

between the probabilistic prediction for dice

experiment and the predictions based on expo-

nential nuclear decay law. It was observed that

the probabilistic prediction closely approaches

the prediction based on exponential nuclear

decay law under two different conditions: (i)

when the data corresponding to a large number

of throws are used, and (ii) when polyhedral

dice having higher number of faces are used.

Comparatively, the prediction based on the first

condition yield better results than the second

one.

1 Introduction

Radioactive decay of heavy nuclei is usually
simulated in the laboratory or class room of
higher secondary schools and undergradu-
ate colleges by rolling dice [1–3]. The most
common dice being a cube whose six faces
are usually marked by numbers like 1 to
6. Rolling of one such dice would yield an
outcome which has the probability of occur-
rence 1/6. Flipping a coin, which has two
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faces, would yield an outcome which has
the probability of occurrence 1/2. Polyhe-
dral dice having 8,10,12 or more faces can
also be used but these are relatively costlier
and not readily available in the market. So,
in general, cubic dice with six faces are the
most widely used dice in the simulation
of radioactive nuclei as these are relatively
cheaper and readily available.

A large collection of six-faced dice is
thrown simultaneously. The dice showing
a particular number (say, for example a ’3’)
are deemed to have decayed like radioac-
tive nuclei and all the other dice showing the
numbers other than three ( i.e., 1,2,4,5 and 6)
are taken as ’undecayed’ nuclei. All the dice
with outcome ’3’ are removed and the re-
maining ’undecayed’ dice are counted. This
number of ’undecayed’ dice is recorded and
represents the number of undecayed nuclei
remaining after a certain interval of time.
The ’undecayed’ dice are then thrown and,
again, those showing a ’3’ are removed and
the remainder counted. This is repeated for
many times and the number of ’undecayed’
dice is counted every time. Such dice rolling
experiment is meant to represent decay of a
particular species of radioactive nuclei with
a certain decay constant λ. It was pointed
out by Murray and Hart [1] that the ’decay
constant’ obtained from dice rolling exper-
iment was consistently higher, on average,
than the value predicted by the theory of
nuclear disintegration. They have quantita-
tively shown that the cause of discrepancy
in the dice decay experiment is the choice of

six faced cube. If, instead, dice having more
number of faces are used, then the discrep-
ancy would be minimized. Greater the num-
ber of faces of dice, lesser would be the dis-
crepancy.

In this article, we attempt to obtain
numerical formulae which are mathemat-
ically consistent with the exponential de-
cay law representing the real nuclear decay.
Through simple analytical steps we arrive at
two different results corresponding to two
different mathematical conditions. One of
the conditions leads us to the same con-
clusion as suggested in [1] while the other
condition leads us to a new formula. The
values of decay constants yielded by this
new formula are found to be more closer
to those predicted by the exponential decay
law, provided, one compiles enough data
corresponding to those dice throws whose
’mass throw numbers’ are equal to or greater
than the number of faces of the dice. For
this, we need to take a very large number of
dice at the beginning so that we can repeat
the dice throw for a large number of times
without being exhausted of the dice within
a few intervals of time.

2 Theory of decay of real nuclei

In the decay of real nuclei, the rate of dis-
integration at any instant of time is directly
proportional to the number of nuclei avail-
able at that instant. If N be number of nuclei
present at an instant of time t, ∆N be the de-
crease in the number of nuclei within a small
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time interval ∆t, then

∆N
∆t

= λN. (1)

The decay constant λ represents the proba-
bility per unit time that a nucleus can un-
dergo disintegration. It is evident from (1)
that the decay rate depends not only on λ

but also on N. If N0 be the number of nu-
clei at the beginning and Nt be the number
of nuclei remaining after a time t, then we
have

Nt = N0e−λt (2)

The half life period of the radioactive nuclei
t 1

2
is defined as

t 1
2
=

ln2
λ

(3)

3 Theory of the decay of the

radioactive dice

A large collection of dice, each having ′s′

number of surfaces, is thrown simultane-
ously. The dice showing a particular face
are deemed to have decayed like radioac-
tive nuclei and all the other dice are taken
as ’undecayed’ nuclei. We choose a constant
time interval ∆t between any two succes-
sive throws. Let us throw N0 dice simul-
taneously by the end of first time interval.
Since we are taking polyhedral dice having
s faces, the probability that a dice decays in
time interval ∆t is 1/s. From the theory of
probability, then, the number of remaining
undecayed dice after the first throw is given
by N1 = N0(1− 1/s) .After n simultaneous

mass throws the number is

Nn = N0(1−
1
s
)n. (4)

Now, the probability per unit time and
hence, by definition, its decay constant λ is
given by

λ =
1

s∆t
. (5)

Since ∆t is the time interval between two
successive throws, the total time elapsed t
after n mass throws is given by t = n∆t .
Therefore, n = sλt . Substituting this in (4)
we obtain

Nn = N0(1−
1
s
)sλt. (6)

Now, we will make use of a well known for-
mula of limits which goes as

lim
s→∞

(1− x
s
)s = e−x (7)

If we choose dice having large s, then we can
employ (7) so as to express (6) in the approx-
imate form

Nn = N0

[
lim
s→∞

(1− 1
s
)s
]λt

= N0
[
e−1]λt

= N0e−λt

(8)
Thus, we find, for large value of s, that the
prediction of (4) would be close to that of
(2). Recall that (2) represents real decay of
nuclei. In other words, the discrepancy can
be reduced by using polyhedral dice hav-
ing higher number of faces. This result is in
agreement with the findings of [1]. Alterna-
tively, we can use the relation n = sλt and
express (4) as

Nn = N0

(
1− λt

n

)n
. (9)
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For large values of n, one can use Eq.(7) to
write Eq.(9) approximately as

Nn = N0 lim
s→∞

(
1− λt

n

)n
= N0e−λt. (10)

This means that the decay constant mea-
sured from dice experiment approaches the
value of decay constant predicted by the real
nuclear decay law when n is large. In other
words, we can say that the discrepancy can
also be minimized by throwing the dice a
large number of times instead of using dice
having large s.

4 Numerical estimation of decay

In the large s approximation, the number of
undecayed dice can be predicted by using
(4). In the case of large n approximation, one
cannot employ (9) directly to make numer-
ical predictions as this equation involves λ

and t . We make the following rearrange-
ments in (10), again, by using (7) with x = 1:

Nn = N0e−λt = N0
[
e−1]λt

= N0

[
lim

n→∞
(1− 1

)n
]λt

On dropping the limit and using λt = n/s
in the above result, we obtain the numerical
formula for large n approximation as

Nn = N0

(
1− 1

n

) n2
s

.

Obviously, the formula given in (11) would
be valid for large values of n. The val-
ues of λ obtained by using (11) are hence-
forth termed as those obtained under large
n approximation (LnA). On the other hand,

the results obtained by using (4) are termed
large s approximation (LsA) results. On the
same footing, decay constants given by the
exponential nuclear decay law, that is (2),
are called real nuclear decay (RnD) results.
Note that (4) and (11) are expressed in terms
of the variables n and s while (2) involves
the variable t . So, for the sake of uniformity
of variables used in (2), (4) and (11), the ex-
ponential law of (2) can be written in terms
of n and s instead of t . Using in (2), we sim-
ply get

Nn = N0e−n/s.

Now, we compare the numbers of unde-
cayed dice or nuclei as predicted by Eq.(4)
(LsA), Eq.(11) (LnA) and Eq.(12) (RnD) and
obtain their respective decay constants.

Table 1: Numbers of undecayed dice/nuclei
with N0 = 10000 and s = 6

Throw number Numbers of undecayed Throw number Numbers of undecayed
(n) dice/nuclei (n) dice/nuclei

LsA LnA RnD LsA LnA RnD
1 8333 * 8465 20 261 327 357
2 6944 6300 7165 21 217 277 302
3 5787 5443 6065 22 181 235 256
4 4019 3946 4346 24 126 168 183
6 3349 3349 3679 25 105 142 155
7 2791 2840 3114 26 87 120 131
8 2326 24077 2636 27 73 102 111
9 1938 2039 2231 28 61 86 94

10 1615 1727 1889 29 51 73 80

Table 1 shows the numbers of unde-
cayed dice/nuclei after various throws for
N0 = 10000 and s = 6. A glance at table 1
reveals that (i) LnA predictions are closer to
the RnD predictions than those predicted by
LsA when , (ii) LnA cannot predict N1, that
is the number of undecayed dice after the
first throw. But, this drawback is insignif-
icant in the calculation of decay constant,

34/4/3 4 www.physedu.in
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and (iii) the number of undecayed dice af-
ter every throw in both, LnA and LsA, are
smaller than that in RnD. For n > s, the
number of undecayed dice in LnA is more
than that in LsA. We have plotted ln N0

N for
three different ranges of n in figure 1. For
uppermost graph n runs from 2 to 10, for
middle graph n goes from 7 to 17 and for
lowermost graph n is from 30 to 40. Note
that for the last two graphs, we have n > s
. These are straight lines whose slopes give
the values of decay constants λ . The LsA
values of λ for all the three ranges of n are
consistently higher (λ = 0.18) than the RnD
values (λ = 0.167) .The LnA yields rela-
tively poor result (λ = 0.163) in the up-
permost graph while it gives better results
in the middle (λ = 0.166) and lowermost
(λ = 0.166) graphs. This is expected as the
condition of validity of LnA is n > s. In or-
der to check the validity of LsA (4) and LnA
(11) for other values of n and s, we generated
data similar to table 1 for s = 10, 20 and 40
and obtained the value of ln(N0/N)

n for each
value of n and plotted them. The resulting
graphs are presented in figure 2. Thus, we
observe that the LnA-formula (11) appears
to predict reasonably good results for n > s
while it is not reliable for n < s . The accu-
racy of LsA results increases with increasing
values of s. For s = 6, the difference between
LsA and RnD result is about 9% and this dif-
ference gradually decreases to 5%, 2.6% and
1.2% for s equal to 10, 20 and 40 respectively.
Interestingly, LnA yield better results than
the LsA for n > s.

2
 4
 6
 8
 10


0.5


1.0


1.5


2.0

10
 15


1.5


2.0


2.5


3.0

30
 35
 40


5.5


6.0


6.5


s = 6

          
  LsA


         
   LnA


         
   RnD


              


 


 


ln
(N


 0

/N


 n

)


Throw number n


s = 6

          
  LsA


         
   LnA


         
   RnD


 


 


ln
(N


 0

/N


 n

)


Throw number n


s = 6

          
  LsA


         
   LnA


         
   RnD


 


 


ln
(N


 0

/N


 n

)


Throw number n


Figure 1: Plots of ln(N0/N) for three
different ranges of mass throw num-
ber n. Here, N0 = 10000 and s = 6.
The throw number n runs from 2 to
10 in the uppermost panel, it goes
from 7 to 17 in the middle panel and
it runs from 30 to 40 in the lower-
most panel. The red solid line rep-
resents the real nuclear decay (RnD),
the blue dotted line denotes dice de-
cay in large n approx.(LnA) and the
green dashed line shows dice decay
in large s approximation (LsA).

34/4/3 5 www.physedu.in



Physics Education Oct - Dec 2018

2 4 6 8 10 12 14 16 18 20 22 24
0.16

0.18

0.20

0.22

0.24

ln
(N

0/
N

) /
n

 

s = 6

ln
(N

0/
N

) /
n

 n

10 20 30
0.09

0.10

0.11

0.12

0.13

0.14

 n

s = 10

 

 

20 40

0.050

0.055

0.060

    

s = 20

 

 

Throw  number n

20 40 60
0.024

0.025

0.026

0.027

0.028

s = 40

 

 

Throw  number n

Figure 2: Variation of ln(N0/N)
n with throw

number n for different values of s. The pre-
dictions of RND, LnA and LsA are repre-
sented by the red solid line, the blue dotted
line and the green dashed line respectively.

5 Conclusion

The accuracy of predictions of the LsA-
formula given in (4) is found to increase
with increasing values of s. Thus, the dis-
crepancy between the rolling dice experi-
ment and the theoretical formula (4) can be
minimized by using polyhedral dice having
large number of faces.

But, polyhedral dice having 8,10,12 or
more faces are relatively costlier and not
readily available in the market. Therefore,
cubic dice with six faces are the most widely

used dice in the simulation of radioactive
nuclei.

In the preceding sections, we have seen
that the LnA-formula (11) predict reason-
ably good results for n > s. Therefore, it ap-
pears to be possible to perform rolling dice
experiment even with six-faced cube and
still obtain a better value of decay constant
by using LnA-formula given in (11). This
means that in the actual dice experiment one
has to take a large number of data so that
she is left with enough data even after dis-
carding the data of the first s throws. In
this scenario, one can use even cubic dice
and obtain still better result. However, in or-
der to consider only those data for which the
throw numbers are greater than the number
of faces of dice, i.e., data satisfying the con-
dition n > s , one has to begin with a large
number of dice and record a large number of
data. This result (11) may be also extended
to other simulation activities involving ex-
ponential decay.

References

[1] Arthur Murray and I. Hart. Phys. Educ.
47, 197, (2012).

[2] E. Schultz, J. Chem. Educ., 74 (5), 505,
(1997).

[3] S. Sahu, Creative Education, 3, 673, 2012.

34/4/3 6 www.physedu.in



Physics Education                                                                                                 Oct – Dec 2018  

 

34/4/4                                                                       1                                                                 www.physedu.in 

Degeneracy of Fresnel Reflection Coefficients at Normal Incidence. 

Luc Lévesque 

Department of Physics 

Royal Military College of Canada 

Kingston, K7K 7B4, Canada. 
luc.levesque@rmc.ca 

 

Submitted on 16-12-2016 
 

Abstract 
The Fresnel reflection coefficients are revisited 

by choosing consistent directions for the relative 

electric field orientations normal and parallel to 

the plane of incidence. The boundary conditions 

are applied at the interface between two semi-

infinite uniform media. This leads us to the 

conclusion that the reflection coefficients for 

both the s and p waves are equal at normal 

incidence, in agreement with the treatment 

presented in some textbooks. A different 

convention is also used in other textbooks and 

gives Fresnel reflection coefficients that are of 

opposite signs. These contradictory results have 

no implications on the reflectivity at an interface, 

which equals the square of each Fresnel 

coefficient, but is changing the phase of the 

electric field reflected at the interface. It is 

believed that the considerations being 

examined, which are based upon symmetry, will 

be useful to university or college teachers when 

introducing Fresnel’s equations in the classroom. 

 

1. Introduction 

The amplitude reflection coefficient r is defined as 

the ratio of the reflected electric field strength Er 

over the incident electric field strength Ei, i.e., 

 
                        

             














ps

i

ps

r
ps

E

E
r

,

,

,                             (1) 

where superscripts s and p correspond to the 

electric fields perpendicular and parallel to the 

plane of incidence, respectively, as shown in figure 

1. Some authors [1-7] compute the amplitude 

Fresnel coefficients from the definitions of field 

vectors shown in figure 1, from which we can 

conclude that, at normal incidence (i ): 
 

              
0


i

ps rr


                              (2) 

 

However, the E and H field conventions depicted 

in figure 2 are also used by some authors [8-13]. 

Yet, from this convention, we obtain a different 

result for the amplitude Fresnel coefficients at 

normal incidence, that is, 
 

                    
0


i

ps rr


                           (3) 
 

This previous result means that rs is shifted by 180º 

with respect to rp even though the E-field 

magnitudes (Ei
s and Ei

p) are parallel to the interface 

at i = 0º.These conclusions have no consequences 

when calculating the reflectance R, as it is given by 

the square of each amplitude Fresnel coefficient. 

Nevertheless, it could lead to errors when 

computing the quantity  defined as the ratio of rp / 

rs in the equations of ellipsometry [14-15] even for 

i > 0º. At normal incidence, the electric field 

vectors E for both the s and p waves are parallel to 

the interface bounded by the two semi-infinite 
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media and as a result they should behave in the 

same way. From this basic symmetry concept, the 

reflection coefficients rs and rp should be equal at 

normal incidence and this means that Eq. (2) would 

be correct.  

 
Eq. (2) also implies that the phase of the reflected 

electric field vector Er for both the s and p waves 

remains the same at normal incidence. This is so 

because at this given incident angle both Er
s and Er

p 

happen to be parallel to the interface. From figure 

1, note that both the s and p waves are parallel to 

the plane of incidence as i (= r) approaches zero. 

Note this is no longer the case for i > 0º. The 

result in Eq. (3) is predicting a phase change in the 

reflection coefficient at normal incidence, despite 

the symmetry of the electric field vector for i = 

0º.This contradictory result from equation (2) 

arises from the definitions of the directions of the 

electric vectors in the system used to represent each 

state of polarisation. 

  

The definition of directions for the vector fields 

shown in figure 1 is often used by some authors [1-

7] and leads to Eq. (2), as shown later in the next 

section.  

The relative orientations of the field vectors shown 

in figure 1 are consistent because for the following 

reasons: 

1) The E-fields (Ei, Er, Et) point in the same 

direction for both polarisations at normal 

incidence. 

2) The relative directions of the reflected H-

field vectors reverse their direction for both 

polarisations at normal incidence. Note that 

the incident and transmitted H-fields keep 

their direction for both polarisations at 

normal incidence. 

3) The relative directions of the reflected H-

fields were chosen so as to ensure that the 

cross-product E x H, for both independent 

polarisations will always point in the 

direction of the power flow. Also, each field 

vector can be found using 

     tritritri ,,,,,,
ˆ EkH 




              (4) 

where tri ,,k̂  is a unit vector pointing in the direction 

of propagation of the incident (i), reflected (r) and 

transmitted (t) rays, respectively. 

In Eq.4,  and are the electric permittivity and 

the magnetic permeability of the material, 

respectively. Because of the above reasons, the 

Fresnel coefficients are expected to be equal (with 

the same sign) at normal incidence.  

  

            
                                       a 
 

 

 

     
                                   b 

 
Figure 1: Reflection in the plane of incidence at the 
interface between two media. The electric field E is 
perpendicular to the plane of incidence (s-wave) in a) 
and parallel to it (p-wave) in b). 
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However, the E and H field conventions depicted 

in figure 2 are also used by some authors [8-13]. In 

this system, the defined directions for both the 

incident and the reflected E-fields are the same at 

normal incidence for the s- wave, but they are 

reversed when treating the p -wave. For instance, 

the incident and reflected H-field vectors are of 

opposite directions at normal incidence for the s-

wave and yet they are assumed to be along the 

same directions at iº for the p-wave. As i 

reaches zero (normal incidence) the reflected vector 

fields should take the same direction for both the s 

and p waves. Therefore the convention used in 

figure 2 for the s-wave (cf.fig. 2a) is inconsistent 

with that of the p-wave (cf.fig. 2b). If one decides 

to change the direction of the reflected H-field (Hr) 

for the s-wave, the change should also be made 

accordingly when treating the p-wave in order to be 

consistent. Based on the convention system in 

figure 2, the Fresnel coefficients for rs and rp are 

expected to change sign upon reflection at normal 

incidence. This sign change has no physical 

meaning (such as a phase shift) and only occurs as 

a result of the contradictory choice of directions of 

each field when treating both independent 

polarisations. Note that the requirement on the 

power flow is fulfilled. 

        
                                  a 

     
                                   

                                  b 
Figure 2: Reflection in the plane of incidence with the 

interface between two media. The electric field E is 

perpendicular to the plane of incidence (s-wave) in a) 

and parallel to it (p-wave) in b). 

 

2. Calculations of rs and rp for both 

convention systems 
In this section, boundary conditions are applied to 

both the consistent (c.f. fig.1) and inconsistent (c.f. 

fig.2) convention systems for the field vector 

directions. In accordance with Maxwell’s boundary 

conditions the tangential component of both the E 

and H field vectors must be continuous at the 

interface bounded by the two media. 

i) For the consistent convention system of 

field vector directions (c.f. fig.1a)   

s-wave. 

Tangential component of the E-field is continuous 

at the interface. As each vector E-field component 

is pointing along the z-axis in this case, we merely 

write 

                         
tri EEE                         (5) 

where Ei =|Ei| , Er =|Er| and Et =|Et| . 
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Tangential component of the H-field is continuous 

at the interface. Using Eq.(4), the y-component of 

Hi, Hr and Ht can be found in terms of Ei, Er, Et, 

iand t, from where it can be found that:                                                          

tt

t

t

iri

i

i EEE 








coscos)(            (6)              

 Multiplying each member of Eq. (6) by 
o

o




 and 

using Eq. 5 we find that the reflection coefficient 

for the s wave (rs) is given by 

          
ttii

ttii
s

nn

nn
r





coscos

coscos




                   (7) 

In previous equations, i and t are the magnetic 

permeability of the incident and transmitted media 

respectively. oandµo is the electric permittivity 

and magnetic permeability in the vacuum. It is 

assumed that i = t = µo and i = r. Note in Eq.7, 

that the relationship 
o

i




 = ni and 

o

t




 = nt were 

also used, where ni and nt are the refractive indices 

of the incident and transmitted media, respectively. 

 

ii) For the consistent convention system of 

field vector directions (c.f. fig.1b)   

p-wave. 

From boundary conditions and Eq.4, one can write 

that, 

             ttiri EEE  coscos)(                    (8) 

               t

t

t

ri

i

i EEE







 )(                      (9)  

  Using Eqs (8) and (9), we find that rp is given by 

                 
tiit
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p
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r
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coscos

coscos




            (10) 

Using Eqs (7) and (10), one finds that at normal 

incidence (i = t = 0º), 

0


i
ps rr


, which is Eq. (2). 

iii) For the inconsistent system of field vector 

directions (c.f. fig.2a)  s-wave. 

As the system of figure 2a is similar to that of 

figure 1a, the reflection coefficient for the s-wave is 

given by Eq. (7). 

iv) For the inconsistent system of field vector 

directions (c.f. fig.2b)  p-wave. 

Again applying boundary conditions and Eq.4 for 

the tangential components of both the E and H 

fields, one may write: 

      
ttiri EEE  coscos)(                         (11) 

        t

t

t

ri

i

i EEE







 )(                           (12) 

 From the two previous equations, it can be shown 

that rp is given by: 

         
tiit

tiit
p

nn

nn
r





coscos

coscos




                         (13)  

Thus, using directions for the E and H field vectors 

shown in figure 2, one deduces that  

                         
0


i

ps rr


                      (14)               

Reflection coefficients rs and rp are plotted in figure 

3 as a function of the incident angle for both the 

consistent (c.f .fig 3a) and inconsistent (c.f .fig 3b) 

directions which were defined for the field vectors. 
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                                          a 

 

                                                b 

Figure 3: Reflection coefficients for each system 

defined. Data ni = 1 and nt = 1.5 were used to produce 

the plots for rs and rp . a) for the convention system 

shown in figure 1  b) for the convention system shown 

in figure 2. 

3. Conclusion 
Results obtained for the case of the inconsistent 

system are showing that the values for rp and rp are 

reversed at normal incidence. As the E-field vectors 

for both states of polarisation are parallel to the 

interface at normal incidence, the reflection 

coefficient are expected to be equal or degenerate at 

i =0º.  This change of sign for rs and rp at i =0º  

(or splitting of degeneracy) does not correspond to 

a 180º phase shift, but is rather a consequence of a 

choice in the direction definition for the electric 

fields Ei and Er in figure 2b. Note that a splitting in 

degeneracy often occurs in a lack of symmetry in 

physical systems, but it is not the case for a 

reflection at normal incidence for both states of 

polarisation. This sign change merely means that 

the direction of Er was assumed incorrectly when 

treating the p-wave in figure 2b. The same analogy 

can be made with electric circuits when the wrong 

direction of current is assumed in a loop when 

applying Kirchhoff’s rules. The previous results do 

not have any implications on the reflectance R at 

the interface as it is given by the square of the 

amplitude reflection coefficients r for each 

polarisation.  
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Abstract

Tokamak plasma characterisation is strongly

correlated with the analysis of magnetic fields

due to currents flowing in circular coils as well

as in the plasma which forms a circular loop

inside a toroidal chamber. The theoretical

estimation of off-central magnetic induction

on the azimuthal plane for a circular current

carrying filamentary loop from Biot-Savart law

comes up with a form that includes integral

solution in terms of elliptic integrals, which

requires numerical attempts for estimation.

Here, we start from a result, obtained as a

consequence of Biot-Savart law for a filamentary

straight wire, and follow an approach for finding

the same at any location on the plane of the

circular conducting loop and end up with some

interesting and useful outcomes, which avoid

the computational attempts for evaluation of

elliptic integrals.

1 Introduction

The tokamak is the most advanced con-
cept for the realisation of controlled ther-
monuclear fusion towards energy produc-
tion. In a tokamak, the plasma is confined
in a toroidal chamber using magnetic fields
and heated up to very high temperatures
(> 108 K) in order to achieve fusion reac-
tions to take place [1]. The magnetic fields
are generated using electromagnets made
up of conventional as well as superconduc-
tors. Several inherent forces, originating
due to the toroidal geometry of the cur-
rent carrying plasma column in a tokamak,
lead to horizontal and vertical movements
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of the plasma column. These movements
of the current carrying plasma column are
arrested by application of suitable magnetic
fields in appropriate configuration. As the
movement of plasma column depends on
several dynamic parameters of the plasma,
the magnitude of the controlling magnetic
fields are required to be adjusted in real
time during the plasma discharge. This re-
quires fast and accurate measurements of
the position of plasma column in a toka-
mak. One of the most common and widely
used diagnostic of plasma column position
in tokamaks is the magnetic pick up loops
[2]. These pick up loops are placed around
the poloidal periphery of the current carry-
ing plasma column. The variations in the
poloidal and radial magnetic fields due to
the movement of current carrying plasma
column are picked-up by these coils, which
can be used to estimate the position of the
column. Although the construction and in-
stallation of these pick-up probes are sim-
ple and the analysis for estimating the col-
umn position is straightforward, the accu-
racy of the plasma column position estima-
tion strongly depends on the in-situ calibra-
tion of these probes.

It is quite well known that the poloidal
magnetic field due to a toroidal current
carrying plasma column varies along the
poloidal periphery of the column at one
toroidal location. The situation is schemat-
ically shown in Fig 1. It can be seen from
the figure that even if the toroidal plasma
column, without considering the Shafranov

Shift [1, 3], sits perfectly at the center of
two probes placed on poloidal periphery at
the horizontal mid-plane, one on the inner
circle of the torus and another on the out-
side of the torus, the inner probe is linked
with more magnetic field lines than that
placed on the outside of the torus. To
calibrate these pick-up probes in ADITYA-
U tokamak, a time-varying-current carry-
ing conductor has been placed at the major
axis of the torus and the poloidal magnetic
field due to this current carrying conductor
picked up by the probes placed in the inside
(R0 − a, where R0 is the major axis and a is
the distance of the probes from the R0) and
outside (R + a) has been measured.

To validate the measurements, the val-
ues of magnetic fields picked up by these
two probes are calculated. The values of the
poloidal magnetic fields around the poloidal
periphery of a toroidal current carrying con-
ductor can be estimated from the first prin-
ciple, i.e., the Biot Savart law and it is quite
well known [4]. However, using Biot Savart
law to estimate the above mentioned mag-
netic fields involves elliptic integrals to be
evaluated [5, 6]. The elliptical integrals are
not very straightforward and have to be
solved numerically to obtain the magnetic
field values. In this paper, we propose an
indirect, although simpler method to deter-
mine the magnetic field values at any loca-
tion on the azimuthal plane of a toroidal cur-
rent carrying conductor at one toroidal loca-
tion. The simplified expression is much use-
ful as well as very handy for the quick es-
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timation of the above mentioned magnetic
field values.

This paper is arranged as follows. Af-
ter reviewing the well-known results in sec-
tion II, we discuss thoroughly the proposed
approach in section III. We then, justify the
reliability of this approach and conclude
how these results are satisfactory for a broad
range of radial distance from the centre of
the circular conductor, along with its limita-
tions in section IV. Finally we summarize the
important outcomes in section V.

2 Earlier Results involving

Elliptical Integrals

If a circular filamentary conductor ‘C’, as
shown in Fig 1, of radius ‘a’ carrying cur-
rent ‘I’ follows a cylindrical coordinate sys-
tem (r, φ, z) with its centre coinciding with
the origin and its axis to be in z direction, the
radial and vertical components of magnetic
induction i.e., Br and Bz, in the (r, z) plane
are given by [5, 6]:

Br =
µ0 I
2π

(z/r)√
(a + r)2 + z2

(
−K+

a2 + r2 + z2

(a− r)2 + z2 E
)

(1)
and

Bz =
µ0 I
2π

1√
(a + r)2 + z2

(
K+

a2 − r2 − z2

(a− r)2 + z2 E
)

,

(2)
where K and E are complete elliptic integrals
of first and second kind, respectively, and
defined by:

K(k) =
∫ π/2

0

dθ√
1− k2sin2θ

,

E(k) =
∫ π/2

0

√
1− k2sin2θdθ,

with k =
√

4ar/[(a + r)2 + z2].
The results obtained by this formula-

tion are taken as the actual theoretical esti-
mation of magnetic induction value and the
values obtained from the proposed scheme
is compared with the values obtained from
the above mentioned formalism. It is to be
noted here that we are interested in calculat-
ing the magnetic field values mainly at the
probe positions, as shown in Fig 1, i.e. on
the plane of the circular conducting coil. The
total magnetic field at these locations has z-
component only, i.e. B = Bz.

3 A Theoretical Approach

Towards Simplified

Consequences : A Filamentary

Conductor Model

3.1 Derivation of magnetic field at a

radial location, smaller than the

conductor radius (inside the

circumference of the loop)

In order to find the magnetic field due to a
circular current (I) carrying filamentary con-
ductor of radius R0 at any arbitrary point,
say E, in the plane of the conductor, within
the circumference, let us imagine the con-
ductor to be composed of infinitesimally
small straight filamentary segments, which
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are the parts of different infinite straight cur-
rent (I) carrying conductors, as shown in Fig
2(a). One of the infinitesimal segments is
shown by

−→
dl at A along with the dashed

line, indicating the infinite straight conduc-
tor the part of which it is, schematically in
Fig 2(b). Moreover, let the normal distance
of E from the infinite straight conductor be
‘d’ (ED) and the nearest point (C) on the cir-
cular conductor is c unit apart from E. The
angles ∠AOC and ∠AED are indicated by α

and β respectively, as shown in Fig 2(b), O
being the geometrical centre of the circular
conductor.

Figure 1: A circular conductor (C) within vac-
uum vessel (VV) carries current I and generates
magnetic field profile, which is tried to show
schematically by few magnetic field lines (green)
in the vicinity of VV. P1 and P2 represent two
magnetic probes, attached with VV, at inboard
and outboard sides respectively. Z and R denote
the vertical axis and horizontal radial axis of the
tokamak respectively. (colored online)

If two end points of
−→
dl make angles β1

and β2 with DE as shown in Fig 3, the mag-
netic field, produced by

−→
dl due to I at E can

be calculated using Biot Savart law and the

(a)

(b)

Figure 2: (a) A circular current carrying conduc-
tor (carrying I), of radius R0 can be imagined to
be composed of infinite number of current ele-
ments, as few of them shown schematically in
red. (b) The circular conductor carrying current
I and E is the field point where magnetic field
needs to be estimated for the whole assembly.
(colored online)
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Figure 3: The current element, which is a part of
an infinite current carrying conductor with cur-
rent I, makes different angles at the centre O and
object point E. (colored online)

simplified final expression comes up with
the form [4]:

4 B =
µ0 I
4πd

(
sinβ2 − sinβ1

)
(3)

and from the geometry we can easily
correlate d with α as:

d = 2R0sin2(α

2
)
+ ccosα. (4)

Eq 3 can be simplified in the limit
−→
dl →

0 for which we can approximately write,
β2 − β1 = dβ → 0, dα → 0, and hence
dβ ' dα, sin

( dα
2

)
' dα

2 , and β2 + β1 = 2β,
where dα is the angle subtended by the two
end points of

−→
dl at the centre O, as shown in

Fig 3. So, Eq 3 simplifies as:

4 B =
µ0 I
4πd

.cosβ.dα. (5)

In order to achieve a more simplified
form of Eq 5 that will be a function of α

only, we need to find the relation between
β and α. Avoiding the complications of ge-
ometry we may find a subtle way to do so if
we observe that at α = 900, β is maximum
and so one of the simplest ways we may ex-
press β in terms of α is cosβ = b1 + a1sinα,
where a1 and b1 are arbitrary constants. As
at α = 0, β = 0 and at α = 900, β =

cos−1
(

R0√
R2

0+(R0−c)2

)
, we have b1 = 1 and

a1 =
[(

R0√
R2

0+(R0−c)2

)
− 1
]
. Thus, Eq 5 re-

duces to

4 B =
µ0 I
4πd

(1 + a1sinα)dα. (6)

To get the resultant magnetic field at E,
we need to integrate the contributions from
all such infinitesimal segments

−→
dl compos-

ing the entire conductor and so the total
magnetic field at E can be found by integrat-
ing their individual’s contributions, i. e.,

BE =
µ0 I
4π

∫ 2π

0

dα

d
+

µ0 Ia1

4π

∫ 2π

0

sinαdα

d
,

or,
BE = I1 + I2, (7)

where I1 = µ0 I
4π

∫ 2π
0

dα
d and I2 =

µ0 Ia1
4π

∫ 2π
0

sinαdα
d . By rigorous calculations we

are left with

I1 =
µ0 I

2
√

c(2R0 − c)
, (8)

I2 = G′
[ 1√

1 + (1− c/R0)2
− 1
]
, (9)
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where G′ = µ0 I
2π(R0−c) ln

∣∣∣1 + 2
(

R0−c
c

)∣∣∣.
Now, in the both limits of c i.e., c → R0

(near centre) and R0 � c (near circumfer-
ence), we have I2 → 0. Moreover at c =

R0/2, I2 has contribution of 6% in the total
magnetic field. Thus, a crude way of writ-
ing the resultant magnetic field within the
circumference is to take only the contribu-
tion from I1 :

BE '
µ0 I

2
√

c(2R0 − c)
or,

B
′
IN(r) =

µ0 I

2
√

R2
0 − r2

, (10)

where r = R0− c. The error, introduced
by ignoring I2, is taken care of by finding
a proper correction factor and is discussed
later.

3.2 Derivation of magnetic field at a

radial location, greater than the

conductor radius (outside the

circumference of the loop)

The conservation of magnetic flux gives a
clue for finding the planar (azimuthal) mag-
netic field outside the circumference of cir-
cular conductor. Let us consider a concen-
tric annular region of radius rin and width
drin on the plane of the conductor inside
its circumference (rin < R0). The magnetic
field lines, which pass through the annu-
lar area 2πrindrin, come through another co-
planner annular region of radius, say, rout

and width drout, outside the circular conduc-

tor. Due to conservation of magnetic flux,
the flux through inner annular region, dφin,
must equal to that through outer annular re-
gion, i.e., dφout and so :

dφin = dφout

or,

2πrindrinB(rin) = 2πroutdroutB(rout), (11)

where B is the average magnetic induction
value on the corresponding annular regions.
Before we proceed further let us look into
the fact that, as rin → R0, rout → R0 and
when rin � R0 we have rout → ∞. These
facts can be used to relate rin with rout and
one of the simplest way is to take

rinrout ≈ R2
0 (12)

and hence

drin = −
( R2

0

r2
out

)
drout.

With the help of these, Eq 11 reduces to

B(rout) = −
( R0

rout

)4
B(rin). (13)

In the vicinity of the circular conductor,
both inside and outside of circumference of
the conductor, a more simplified and handy
formula for B(rout) can be derived using Eq
13. If rout = R0 + c and c � R0, we may
write rin = R0 − c and hence,

B(R0 + c) = −
( R0

rout

)4
B(R0 − c), c� R0.

(14)
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In order to check the accuracy of this
formalism, we compare the ratio of the mag-
netic fields at rin and rout as calculated us-
ing Eq 14 in the vicinity of the conductor cir-
cumference with that obtained by the ellip-
tical formulation of magnetic field i.e., Eq 2.
For a circular filamentary conductor of ra-
dius R0 = 75 cm carrying 1 kA of current,
the maximum difference between both the
formulations is of order of 9% for c = 27 cm,
which seems to be due to the simplifications
introduced in Eq 12. To overcome this dis-
crepancy and to reduce the error, Eq. 14 is
modified as

B(R0 + c) = −
( R0

R0 + c

)4.3
B(R0− c), c� R0.

(15)
The magnetic field values from two dif-

ferent formulations, i.e., from elliptic inte-
gral approach and from the proposed ap-
proach are compared in Table 1, which

shows the ratios of
∣∣∣B(R0−c)

B(R0+c)

∣∣∣ for a circular
filamentary conductor of radius R0 = 75
cm carrying 1 kA of current. The improve-
ment in Eq 15 from Eq 14 drops the inaccu-
racy in the percentage error from 9% to less
than 0.1% in case of a circular filamentary
conductor of radius R0 = 75 cm carrying 1
kA of current at c = 27 cm and is also com-
pared for different values of c in Table 1. Eq
15 is further verified for other values of R0

and satisfactory results are obtained as dis-
cussed in the next section. It is to be empha-
sized here that, for r ≥ 2R0, Eq 15 can never
be used, though sufficient error comes even
at a distance shorter than 2R0.

Ratio of magnetic induction values for a circular filamentary conductor of radius R0 = 75 cm

carrying 1 kA of current. Here, Bi and Bo correspond to B(rin) and B(rout) respectively, and |Bi/Bo|ell

stands for the ratio as obtained using elliptic formulation.

c in cm |Bi/Bo|ell |Bi/Bo| using Eq 14 |Bi/Bo| using Eq 15
10 1.82 1.65 1.71
15 2.29 2.07 2.19
25 3.47 3.16 3.45
35 5.11 4.63 5.19

4 Correction in the Formulation

The approximations as well as the sim-
plifications, used in the proposed indirect
derivation of the magnetic fields at two ra-
dial locations, inside and outside of the cir-

cular conductor circumference at the hori-
zontal mid-plane, lead to significant errors
in magnetic field values, obtained from Eq
10 and Eq 14 as compared to those obtained
from Eq 2. One of the major simplifications
that is taken into account towards deriving
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Figure 4: Plot of percentage error in Beq(r <

R0), found using Eq 10, with relative distance
from centre of coil, x for R0 = 25 cm as indicated
by points. The solid line is the fitted curve fol-
lowing a′eb′x with a′ = 1.1860, b′ = 4.014. (col-
ored online)

Figure 5: Plot of percentage error in Beq(r <

R0), found using Eq 10, with relative distance
from centre of coil, x for R0 = 50 cm as indicated
by points. The solid line is the fitted curve fol-
lowing a′eb′x with a′ = 0.8202, b′ = 4.494. (col-
ored online)

Eq 10 is corelating α and β through the rela-
tion cosβ = b1 + a1sinα, which is explained

in section 3.1 . Due to this a maximum er-
ror ∼ ±8− 10% occurred in the estimation
of cosβ for a given α and this has the major
contribution in the inaccuracy in estimated
B
′
IN that reaches upto 50% as we come at

the vicinity of R0. The details are discussed
in the following sections. Further in case of
magnetic field values at rout obtained using
Eq 15, an approximated relation defined in
Eq 12 is taken into account. As described
in section 4.2, the error due to assumption
defined in Eq 12 is very small in the vicin-
ity of the conductor, however, it drastically
increases as one moves away from the con-
ductor. To quantify the error in both the
cases (at rin, rout), we define fractional er-
ror (g) = (Bac − Beq)/Bac, where Bac and Beq

are magnetic flux densities calculated using
Eq 2, and Eq 10 and 15 respectively. The
correction in the formalism for removal of
these errors are described in the following
sub-sections.

4.1 For magnetic field at r < R0

In the case of r < R0, the percentage error
is obtained for magnetic fields calculated at
different normalized radial positions (x =

r/R0) and are shown in Fig 4 to 7. Inter-
estingly, this percentage error g can be well-
fitted using an exponential function of the
form

g× 100 = a′eb′x,

where a′ and b′ are arbitrary constants
and can be found from chi-square fitting of
the data. Table 2 enlists few of the a′ and b′
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values for different R0 . Towards correcting
Eq 10, we can proceed with the averaged a′

and b′ values that are a = 〈a′〉 ∼ 0.88885 and
b = 〈b′〉 ∼ 4.4095, respectively.

Therefore, we may write

Bac − Beq

Bac
× 100 = ae

b
(

r
R0

)
. (16)

Finally, the corrected expression of
magnetic induction at r < R0 can be given
by :

Bac(r < R0) =
Beq(r)

1−
(

a
100

)
eb(r/R0)

, (17)

where Beq = B
′
IN, given by Eq 10.

Here we end up with the approximated
formula that is justified to estimate the mag-
netic field at r < R0 for the circular coil of
randomly chosen radii and for few of the
R0 values we have the percentage error not
exceeding 10%, as shown in Fig 9 and 10.
Although we have restricted our choice to
few randomly chosen radii, the similar pro-
cedure can be followed for other ranges of
R0 to have appropriate values of a and b. In
this way, a huge numerical effort can easily
be by-passed.

Fitting parameters, as obtained from Fig 5 to 8, due to the plots of g× 100 vs. x.

R0 in cm a′ b′

25 1.1860 4.014
50 0.8202 4.494
75 0.7804 4.556

100 0.7688 4.574

4.2 For magnetic field at 2R0 > r > R0

The error introduced in the values of B out-
side the circular conductor (r > R0) is
mainly due to the assumption made in Eq
12. To quantify the error, for a given rin,
rout is found with the help of POISSON code
[7, 8]. rout from POISSON is estimated by
following different magnetic field lines pass-
ing through rin and rout. The normalised er-
ror in rout, calculated using

δrout = (rac
out − r12

out)/rac
out

for a circular conductor of radius R0 = 77
cm, is shown in Fig 8, where r12

out is found
using Eq 12, rac

out is found from POISSON. It
can be clearly seen from the figure that al-
though the relative difference is very small
(∼ 2.44%) in the vicinity of the conductor, it
rises and reaches up to ∼ 25% at rout ∼ 2R0.
The similar plots are obtained for a number
circular conductors with different R0 and
the nature of the error is found to follow the
similar trend both in magnitude and posi-
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Figure 6: Plot of percentage error in Beq(r <

R0), found using Eq 10, with relative distance
from centre of coil, x for R0 = 75 cm as indicated
by points. The solid line is the fitted curve fol-
lowing a′eb′x with a′ = 0.7804, b′ = 4.556. (col-
ored online)

Figure 7: Plot of percentage error in Beq(r <

R0), found using Eq 10, with relative distance
from centre of coil, x for R0 = 100 cm as indi-
cated by points. The solid line is the fitted curve
following a′eb′x with a′ = 0.7688, b′ = 4.574.
(colored online)

tional variation. This leads to a percentage
error in Bout with relative distance from the
coil centre i.e., x = r/R0 as shown in Fig 9

Figure 8: The variation of relative error in
finding rout, using Eq 12, with relative distance
rout/R0 for a given circular conductor and given
rin. (colored online)

Figure 9: Plot of percentage error in Beq, found
using Eq 15 and 17, with relative distance x for
five arbitrary circular coil radii, as provided in
the legend box. (colored online)

for few arbitrary values of R0 as indicated in
the legend box. The error in B is found to
be in the range of ∼ 4% to −17%, in which
the major contribution comes from the max-
imum error 25% in rout in the vicinity of
2R0, up to a relative distance r/R0 = 1.88,
beyond of which this error grows signifi-
cantly. Also, the graphs show a good over-
lap of plots for different R0 in the range of
x from 0.0 to 0.9 (inside the circumference)

34/4/5 10 www.physedu.in



Physics Education Oct - Dec 2018

Figure 10: Plot of percentage error in Beq, found
using approximated Eq 15, 17 as indicated by A
and using less approximated scenario in Eq 17,
18 as indicated by LA, with relative distance x
for three arbitrary circular coil radii, provided in
the legend box. (colored online)

and from 1.1 to 1.88 proving the universality
of this formulation. Now, as we approach
from r = R0 to r = 2R0, c(= r − R0) is no
longer small i.e., c � R0 no longer holds
and so Eq 15 needs to be rectified as r ap-
proaches to 2R0. By chi-square fitting, as be-
fore, we find the modfied form of Eq 15 to
be

B(rout) = −(R0/rout)
4.9B(rin),

or,

B(rout) = −(R0/rout)
4.9B(R2

0/rout). (18)

Fig 10 compares the results obtained
from Eq 15 and 18, where the percentage er-
ror in B is obtained by Eq 17 for r < R0 and
by Eq 15 and 18 for r > R0. The results
are plotted with respect to relative distance x
for three arbitrary coil radii covering a wide
range of coil radii, as indicated in the legend

box. The approximated formula as given by
Eq 15 is indicated by A whereas, a less ap-
proximated formulation given by Eq 18 is
described by LA in the figure. As per our
expectation, a more accurate result is found
using Eq 18 in the vicinity of r = 2R0 and
we can find a value of x = r/R0 to be 1.765
from the plots, above which Eq 18 gives a
better estimate and below to that, Eq 15 shall
be taken into account for the calculations in
the regime r > R0.

5 Summary and Discussions

We can summarize the outcomes for the
magnetic field on the azimuthal plane of a
current carrying loop at a radial distance r
as follows :

BIN(r) =
B
′
IN(r)

1−
(

a
100

)
eb(r/R0)

, r < R0,

BOUT(r = R0 + c) = −
( R0

R0 + c

)4.3
BIN(R0− c),

for
R0 < r ≤ 1.765R0,

BOUT(r) = −(R0/r)4.9BIN(R2
0/r),

for
r > 1.765R0,

where

B
′
IN(r < R0) =

µ0 I

2
√

R2
0 − r2

,

a ∼ 0.88885, b ∼ 4.4095, and other symbols
have their usual meanings.
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It is very interesting to achieve the well-
known expression for the central magnetic
induction if we simply put r = 0 in the ex-
pression of BIN as, then the limiting value

goes as :
[
1 −

(
a

100

)]
→ 1. Due a drastic

increase in the percentage error in BOUT be-
yond 2R0, this method is never suggested to
use in this limit of r.

In case of upgraded ADITYA tokamak
(major radius, R = 75 cm), we needed the in-
board to outboard ratio of magnetic induc-
tion at the location of Mirnov probes, for
which the experimental values of this ratio
was still unavailable, to find the positional
shifts of plasma column and as the probe is
at 27 cm apart from the centre of vacuum
vessel, the corresponding ratio came up to
be 3.42 using Eq 14. This helped to choose
an appropriate value of the ratio from 3.1
and 3.7, found using POISSON [7, 8] and el-
liptic formulations, respectively, and finally
achieved the temporal variation of plasma
shifts in horizontal direction satisfactorily.
Later on, these values experimentally are
found to be 2.53 and 2.86 for two differ-
ent Mirnov garlands, installed in ADITYA-
U, and this discrepancy in the magnitude is
found to come due to some other suspected
source, induced in the nearby conducting
structures.

As our analysis follows a general ap-
proach towards the estimations and is ver-
ified for the accuracy in case of a broad
range of radii values of the circular coils, we
conclude these results to be useful enough
within the specified radial distance for quick
and easy estimation of magnetic fields in

the azimuthal plane of circular loop current-
carrying conductor, as it does not require
any numerical calculation.

References

[1] J. Wesson. Tokamaks, (Oxford, 1997)

[2] I. H. Hutchinson. Principles of
Plasma Diagnostics, (Cambridge Uni-
versity Press, 1987)

[3] V. D. Shafranov (1960). JETP (No. 4) 10,
775

[4] D. J. Griffiths. Introduction to Electro-
dynamics, (Prentice Hall of India Pvt.
Ltd., 1991)

[5] A Method for Measuring Plasma Po-
sition in TJ-I Tokamak, J. Qin and TJ-
I Team, Asociacion Euratom/Ciemat-
Fusion, 28040 Madrid, Spain.

[6] W. Feneberg, K. Lackner, P. Martin
(1984). Computer Physics Communica-
tions 31, 143-148

[7] Los Alamos Accelerator Code Group
(1987). Reference Manual for the Pois-
son/Superfish Group of Codes, New
Mexico: Los Alamos National Labora-
tory LA-UR-87-126

[8] Los Alamos Accelerator Code Group
(1987). Users Guide for the Pois-
son/Superfish Group of Codes, New
Mexico: Los Alamos National Labora-
tory LA-UR-87-115

34/4/5 12 www.physedu.in



Physics Education Oct - Dec 2018

Relativistic Rocket, Its Equation of Motion and

Solution for two Special Cases

Somnath Datta

Professor of Physics (Retired),
National Council of Educational Research and Training,

New Delhi-110016
Res: 656, “Snehalata”, 13th Main, 4th Stage,T K Layout,

Mysore 570009, India
datta.som@gmail.com;

http://sites.google.com/site/physicsforpleasure

Submitted on 21-10-2018

Abstract

This article adopts 4-dimensional Minkowski

formalism to obtain the equation of motion

of a relativistic rocket, i.e., a vehicle in which

the exhaust particles are ejected with a fixed

relativistic velocity u opposite the direction of

the motion of the rocket, which is taken to

be the x direction. We obtained the equation

of motion in the instantaneous rest frame of

the rocket, labeled as So, and then converted

this equation of motion into the ground frame

S. As a prerequisite to this derivation we also

reviewed the mass equation of the rocket, i.e.,

the relationship between the instantaneous

rest mass M of the rocket and its velocity v.

We subjected both equations, i.e., the mass

equation and the equation of motion to the N.R.

test, i.e., the requirement that the forms they

assume when v � c (where c is the velocity

of light) converge to their Non Relativistic

counterparts. We obtained the solution of the

equation of motion in two special cases, namely

(i) u = c/3, and (ii) u = c, and made a plot

of the v − t relationship for both cases. It is

seen that the v− t plot for the case (i) nearly

follows the corresponding N.R. counterpart, i.e.,

u� c, up to v ' 0.5c.

1 Relativistic Rocket

A relativistic rocket, in principle and for all
theoretical calculations, is the same famil-
iar rocket the students have studied in their
mechanics books[1, 2], with the difference
that the exhaust gas is ejected with a “rela-
tivistic speed” u and, as a consequence, the
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rocket accelerates to a relativistic speed in
due time. What we call relativistic speed is
roughly the range: c/3 / u 5 c, where c is
the speed of light. Because of the relativis-
tic velocities involved in this case Newto-
nian mechanics breaks down, and we have
to use Minkowskian mechanics, in particu-
lar Minkowskian equation of motion.

A relativistic rocket, i.e., a space-ship
propelled by ejected gas to a relativistic
speed is hardly a reality. However, one
can still think of matter-antimatter annihi-
lation rockets, pion rockets, for intellectual
entertainment[3]. The impracticability of
operating such contrivances has been illus-
trated through actual calculations by some
authors[4, 5], using the example of a photon
rocket (i.e., a spaceship propelled by a beam
of photons.) Even then the purpose behind
our spending time on such an object is some-
what pedagogical. The exercises we are go-
ing to undertake are intended to sharpen
ones understanding of Minkowskian Equa-
tions of Motion, employing 4-vectors.

The mass equation we have derived for
a relativistic rocket (see Eq. 28), and the
momentum-energy conservation principles
used to arrive at it have been covered by sev-
eral authors[6, 7, 8, 9]. Pomeranz wrote sev-
eral papers on this subject[10, 11, 12]. We
have written the Equation of Motion (EoM)
for the rocket in two equivalent forms as
Eqs.(46) and (47). The second form agrees
with the 1969 paper (but not with the 1964
paper) of Pomeranz.

Some features of this article that may

kindle a special interest in a student or a
teacher of special relativity are the follow-
ing.

1. We have subjected the two impor-
tant equations derived in this article,
namely, (a) the mass velocity equation
(28), often referred to as the Ackeret
equation[6], and (b) the EoM (49) to the
N.R. Test, by which we mean that all
relativistic equations that have a Non-
Relativistic (N.R.) analog must con-
verge to their N.R. counterparts when
v� c.

2. Taking u as the ejection velocity of
the emitted gas/radiation, we have ob-
tained two special solutions of the EoM,
corresponding to (i) u = c/3, and (ii)
u = c. We have plotted the velocity-
time relation for both the cases, and
shown that the plot for the case (i)
closely follows the the plot for the corre-
sponding formula for v = v(t) obtained
using N.R. (Newtonian) mechanics, up
to v ' 0.5c.

3. We have adopted a 4-dimensional
Minkowskian approach to obtain the
EoM of the rocket, using 4-vectors,
e.g., 4-velocity, 4-momentum, 4-
acceleration, 4-force. For this purpose
we have adopted a mathematical
formalism as outlined by Moller[13].

In a recent article Bruce[14] has demon-
strated convergence of the Ackeret equa-
tion (28) to its N.R. counterpart Tsiolkovsky

34/4/6 2 www.physedu.in



Physics Education Oct - Dec 2018

equation[15] (1b), by writing the mass ratio
as a product of an infinite series, and ob-
taining the result using a finite number of
terms. In contrast we have demonstrated
exact convergence of both the Ackeret equa-
tion and the EoM to their N.R. counterparts
when β� 1.

2 Symbols and
Conventions

All 4-vectors will be presented by a bold let-
ter with a full arrow overhead. While writ-
ing its components, the time component, i.e.,
the t-component, will come first, to be fol-
lowed by its space components in the x, y, z di-
rections. For example, if

−→
A is a 4-vector, we

shall express it as
−→
A = (At, Ax, Ay, Az) =

(A0, A), where A = (Ax, Ay, Az) constitutes
a 3-vector. Since the motion of the rocket
will be only one-dimensional, confined to
the x-direction, the y, z components will be
absent. The same 4-vector

−→
A will have only

t and x components, i.e.,
−→
A = (At, Ax).

The “ground frame” of reference, from
which the motion of the rocket is observed
will be denoted as S. The instantaneous rest
frame (IRF) will be denoted by So.

Time and space components of a typical
4-vector

−→
A , corresponding to motion in the

x-direction, will be written as (At, Ax) with
respect to S, and as (A

′ t, A
′ x) with respect

to So. Note the prime tag “ ′ ” attached to the
IRF So.

3 The Rocket, its
Specifications

Let us now take a look at the rocket of our
discussion. It is moving along the x-axis
with velocity v(t) m/s with respect to an in-
ertial frame S, which, for fixing the idea, we
shall call the Ground Frame (GF). It is ejecting
gas at a constant velocity−u m/s and its rest
mass at a constant rate r = dµ0

dτ kg/s, relative
to its Instantaneous Rest Frame (IRF) So(Θ),
thereby generating a Reaction force (in this
case a Thrust force)

−→
R. Our purpose is to

find a formula for
−→
R, and then the Equation

of Motion (EoM), and then a solution of this
EoM for two representative cases.

Note that we have labeled the IRF with
with the extra tag (Θ) to stress that it coin-
cides with the rocket frame R at the event
Θ , which, for fixing the idea can be taken

as Θ : “rocket passes a space station A” .
Every IRF has to be associated with one, and
only one, event Θ . This association will be
useful in the discussions to follow.

It may be worthwhile to stress at this
point, even though the reader is aware of it,
that S and So are both inertial frames and
therefore, the components of any 4-vector
w.r.t these two frames can be connected by a
Lorentz Transformation. Such connection is
not possible between the rest frame R of the
rocket in which the rocket is permanently at
rest and either S or So, because R is an accel-
erating frame.

Three quantities are specified for the as-
sessing the performance of the rocket: u, r
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and Mi ≡ initial rest mass of the rocket at the
instant t = 0, when it starts with zero veloc-
ity. In this article M = M(Θ) will stand for
the instantaneous rest mass of the rocket at the
event Θ. When written as a function of the
“ground time” t, it will be appear as M(t).

Let us consider two infinitely close
events ΘA and ΘB (corresponding to the
rocket passing two infinitely close space sta-
tions A and B on its path), the time-space
coordinate differentials between them being
(c δt, δx) w.r.t S, and (c δτ, 0) w.r.t So. Be-
tween these events the rocket ejects a quan-
tity of gas of rest mass δµ0. Consequently its
own velocity changes (i) from v(t) to v(t)
+ δv w.r.t the GF S, (ii) from 0 to dv′ w.r.t
So, and (iii) its rest mass changes from M(t)
to M(t) + δM. Note that the time differ-
ential between the events being infinitesi-
mally small, δτ is the proper time between the
events. Also, note that, the rate of emission
of the rest gas mass w.r.t. the rocket frame is
r = dµ0

dτ = limδ→0
δµ0
δτ , which is taken as a

constant.

In summary, the performance of the
rocket is decided by three specifications: (i)
its initial mass Mi, (ii) the rate r = dµ0

dτ at
which rest mass is ejected from the rear end
w.r.t the IRF, (iii) the speed −u, w.r.t the IRF,
with which this rest mass is ejected. These
quantities, being in the specification book
supplied by the manufacturer, are frame in-
dependent and are to be taken as constants.

In Eq. (36) (to follow) we have defined
another constant $ ≡ gr = the rate of emis-
sion of the relativistic gas mass w.r.t. the

rocket frame, where g = g(u), defined in
Eq. (2), is the Lorentz factor associated with
the ejection velocity −u, and is therefore a
constant. Finally in Eq. (49) we have com-
bined all the above constants into a single
constant k, while writing the Equation of
Motion.

4 Review of the
Non-Relativistic (N.R.)
results

We shall briefly review the N.R rocket for-
mulas so that we can compare the relativis-
tic results with their N.R. counterparts. We
shall drop the subscript “o” from dµ0, be-
cause in the N.R. zone there is no such thing
as proper mass. The N.R. formulas can be
found in standard books on Mechanics. We
shall quote the following formulas[1, 2].

δv = −u
δM
M

. (a)

v = u ln
(

Mi

M(v)

)
M(v)

Mi
= e−

v
u . (b)

T = thrust force

= ru. (c)

r =
dµ

dt
= −dM

dt
(d)

M(v)
dv
dt

= T = ru,

Mie−
v
u

dv
dt

= ru. (e)

Hence, v = −u ln
(

1− rt
Mi

)
. (f)

(1)

In line (b) M(v) is the same as M(t), since
v = v(t). Line (d) in which dµ is the mass of
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the gas ejected in time dt, is a re-statement of
conservation of mass. The relationship be-
tween the velocity differential and mass dif-
ferential shown in line (a) is a consequence
of (i) conservation of mass, and (ii) conser-
vation of linear momentum. The mass ratio
equation (b), known as Tsiolkovsky rocket
equation[15], is obtained by integrating the
differentials in line (a). Line (e) represents
the EoM of the rocket. Line (f) gives the so-
lution of the EoM, subject to the initial con-
dition: v = 0 when t = 0.

5 Review of the formulas to
be used

Let us be specific about the frames of ref-
erence, the symbols for velocity, and the
Lorentz factors associated with the veloci-
ties. All motions are in the X direction. As
already mentioned, the ground frame is S,
the IRF of the rocket (at Θ) is So. The veloc-
ity of the rocket, and hence that of So, is v(t)
w.r.t S. The velocity of the ejected gas is con-
stant w.r.t. So and equal to −u. Let v(t) rep-
resent the velocity 3-vector of an arbitrary
particle having components (vx, vy, vz) w.r.t
S and (v′x, v′y, v′z) w.r.t So.

In order to avoid future confusion let
us remind the reader that v and v are two
different velocities. The former, i.e, “roman
v” stands for rocket velocity. The latter i.e.
“italicized v” stands for the velocity of any
arbitrary particle, and will be needed for
defining the space and time components of
4-velocity, 4-acceleration, 4-momentum and

4-force in general.

This distinction between v and v will be
removed from Sec. 6 downwards, when the
particle in question becomes the same as the
rocket itself, momentarily at rest in the IRF
So, and moving with the velocity v w.r.t. S.

We now have the following Lorentz-
factors (to be abbreviated as L-factors), cor-
responding to the velocities to be used .

g(u) =
1√

1− u2

c2

; γ(v) =
1√

1− v2

c2

Γ(v) =
1√

1− v2

c2

; Γ′(v′) =
1√

1− v′2
c2

.
(2)

It has been our usual practice[16] to
write the L-factor associated with the
Lorentz transformation with the lower case
symbol γ and the L-factor associated with
the velocity of a particle with the upper case
symbol Γ. We call them by two different
names, viz., Boost Lorentz factor and Kine-
matic Lorentz factor, respectively. In this
particular case γ is a boost L-factor (corre-
sponding to the boost S→ So), and Γ, Γ′, as
well as g, are Kinematic L-factors.

Note that the other specifications
(namely, u and r) remaining the same,
introduction of the L-factors makes the
difference between the N.R. case and the
relativistic one.

We shall now start a relativistic ap-
proach to the motion of the rocket. We shall
begin by a review of the 4-vectors to be used
in our discussions, and the basic equations
of motion.
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The kinematic and dynamical
4-vectors

We shall write velocity, momentum, acceler-
ation, force, as 4-vectors, so that (1) we can
write the equations of motion covariantly,
and make them valid in all inertial frames;
and (2) we are able to transform the time
and space components using Lorentz Trans-
formation.

Let us introduce two dimensionless ve-
locities

β ≡ v(t)/c; ν ≡ v/c. (3)

The transition S → So, will be called boost
S(cβ, 0, 0)So, and the inverse transition So →
S boost So(−cβ, 0, 0)S. For our purpose the
inverse transition is more important.

Suppose
−→
A is a contravariant 4-vector,

having components (A
′t, A

′x) in the IRF So,
and (At, Ax) in the GF S. Then by Lorentz
transformation the above components trans-
form as follows:

At = γ(A
′t + βA

′x). (a)
Ax = γ(A

′x + βA
′t). (b)

(4)

We shall now write the (t, x)-
components of 4-velocity

−→
V , 4-momentum

−→
P , 4-acceleration

−→
A , 4-force

−→
F and obtain

their transformation equations correspond-
ing to So → S. The arrows “→” in some of
the formulas below will imply narrowing
down of the (t, x, y, z) components to (t, x)
components.

4-velocity

Consider a particle moving with arbi-
trary velocity v(t). The Lorentz factor for
this velocity is Γ, as defined in (2). Between
two infinitely close events ΘA and ΘB on the
world line of the particle, it undergoes a 4-
displacement δ−→r , as its own clock records
a time lapse of δτ, and the clock in any in-
ertial frame S a time lapse of δt. Since δτ is
proper time, it is related to the time δt by the
equation[17]

δτ =
δt
Γ

. (5)

The displacement 4-vector δ−→r ≡
(c δt, δr) is the primordial contravariant 4-
vector from which other contravariant 4-
vectors are derived by multiplication or di-
vision with 4-scalars, namely mo, the rest
mass (or proper mass of the particle) and δτ,
the proper time between the events ΘA and
ΘB. By this property all the 4-vectors to fol-
low are contravariant 4-vectors.

The 4-velocity of the particle is defined
as

−→
V ≡ lim

δτ→0

δ−→r
δτ

=
d−→r
dτ

= Γ
d−→r
dt

= Γ

(
c dt
dt

,
dr
dt

)
= Γ(c, v) → Γ(c, v). (6)

Note that v = dr
dt is the velocity 3-vector.

Let us apply the Lorentz transformation (4)
to the components of

−→
V .

Γc = γ(Γ′c + βΓ′v′). (a)
Γv = γ(Γ′v′ + βΓ′c). (b)

(7)

Setting v = c ν, and simplifying, we get
the following two important relations.
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Γ = γΓ′(1 + βν′). (a)

ν =
ν′ + β

1 + ν′β
. (b)

(8)

Equation (b) is known by the popular name
velocity addition formula.

4-acceleration

The 4-acceleration
−→
A is defined, from

which its components are obtained[17, 18],
as follows.

−→
A ≡ d

−→
V

dτ

=

(
Γ4

c
(a · v), Γ4

c2 (a · v)v + Γ2a
)

→ Γ4a
(v

c
, 1
)
= Γ4a (ν, 1) . (9)

Here
a ≡ dv

dt
→ a =

dv
dt

(10)

is the acceleration 3-vector.
Let us now apply LT (4) to the x-

component of
−→
A .

Ax = γ(A′x + βA′t).
or, Γ4a = γΓ

′4a′(1 + βν′).
(11)

Let us now suppose that the moving par-
ticle, being observed from S and So, is the
rocket itself. In other words the particle is at
rest in So, so that ν′ = 0, Γ′ = 1, γ = Γ. In
this case the boost L-factor is identical with
the kinematic L-factor w.r.t. S. Also, we
shall set a′ = ao = acceleration of the rocket
in its rest frame, which can be constant or
variable. Then the above equation takes an
important form[17]

a =
ao

Γ3 . (12)

For a particle subjected to a finite accel-
eration ao in its rest frame (due to some ex-
ternal force , e.g., an external electric field),
its acceleration w.r.t. any inertial frame van-
ishes as v → c, and consequently Γ → ∞.
The above equation protects the rocket from
reaching or exceeding the speed of light,
even under an ever-continuing acceleration
in its rest frame.

4-momentum

Let us consider a particle of rest mass mo

moving with 4-velocity
−→
V . The 4-momentum

−→
P of the particle is then defined as[18]:

−→
P ≡ mo

−→
V = moΓ(c, v)→ moΓ(c, v). (13)

If we write

m = relativistic mass

= Γmo, (a)
p = relativistic momentum

= Γmov = mv, (b)
E = total energy

= Γmoc2 = mc2, (c)

(14)

then
−→
P =

(
E
c

, p
)

. (15)

For a mass-less particle, e.g., photon,

E = |p| c. (16)

Hence,

−→
P =

(
E
c

,
E
c

n
)

for a photon, (17)

where n is the direction of propagation of
the photon.

4-force
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The 4-force
−→
F , termed Minkowski 4-force

is defined in such a way that it will satisfy
Minkowski’s Equation of Motion[18]:

−→
F =

d
−→
P

dτ
= Γ

d
−→
P
dt

. (18)

It follows from (15) that

−→
F = Γ

(
1
c

dE
dt

,
dp
dt

)
= Γ

(
Π

c
, F
)

→ Γ

(
Π

c
, F
)

(19)

where F = dp
dt is the 3-force as in Newto-

nian Mechanics, and Π (Capital-pi) stands
for the power received by the particle (same
as energy received by the particle per unit
time), due to (i) work done on it by external
forces, and/or (ii) by absorption of radiation
or heat (thereby changing its rest mass). In
the case of a particle whose rest mass does
not change, Π is the same as the power de-
livered by the force F, as shown in Eq. (22)
below.

Consider a point particle with a con-
stant rest mass mo. Due to (13), the equation
of motion (18) becomes

−→
F = mo

−→
A = mo

d
−→
V

dτ
. (20)

In this case the 4-force
−→
F is orthogonal to

the 4-velocity
−→
V ,

−→
F · −→V = 0, (21)

and the 4-force takes the form[18]:

−→
F = Γ

(
F · v

c
, F
)
→
−→
F = Γ

(
Fv
c

, F
)

.

(22)

Let us note here that the time-space
components of the 4-force written in the
form (22) is a consequence of the orthogo-
nality between

−→
F and

−→
V , which in turn is

due to the 4-force written in the form (20).
In the sequel we shall write the EoM in the
form (20), in which

−→
F will be replaced by

the reaction 4-force
−→
R, and mo by the instan-

taneous rest mass M of the rocket, which is
variable. See Eq. (43). Therefore

−→
R will have

time-space components as in (22).

6 Relativistic mass equation

Even though the relativistic mass formula is
well known (known as Ackeret[6] equation),
we shall make a brief review with two pur-
poses: (1) some of the formulas developed in
the process will be required in the sequel; (2)
we shall demonstrate that the mass equation
and the EoM (to be derived soon) converge
to the corresponding formulas (1 b) and (1 e)
in the N.R. limit.

At this point we shall change the veloc-
ity symbol for the rocket from v to v w.r.t. S,
and from v′ to v′ w.r.t. So. Also we shall set
β = v

c .
As noted in paragraph 5 of Sec. 3 the

rocket velocity changes from 0 to δv′, and
it ejects a quantity of gas of rest mass δµ0

from the event ΘA to the event ΘB in the IRF
So. We shall write the components of the 4-
momentum of the rocket at ΘA and ΘB, and
of the gas ejected between these events - all
of them in So.

At this point we draw the attention of

34/4/6 8 www.physedu.in



Physics Education Oct - Dec 2018

the reader to what we wrote in paragraph 4
of Sec. 3. We emphasize once again that M =

M(Θ) = M(t) = M(τ) is the instantaneous
rest mass of the rocket at the event Θ and
hence, is a 4-scalar.

The (t, x) components of the momen-
tum 4-vectors we shall write below will fol-

low from (13), in which we shall set mo =

M(t). Also, note that the kinetic L-factors
are: g for the ejected gas, and Γ′ = 1 for the
rocket, since v′ = 0, i.e., the rocket is mo-
mentarily at rest in So. The 4-vectors written
below have only (t, x) components, and are
valid in the IRF So.

At ΘA :
−→
P = M(c, 0) (a)

At ΘB :
−→
P + δ

−→
P = (M + δM)(c, δv′) (b)

Change in 4-momentum : δ
−→
P = (δMc, Mδv′) (c)

4-momentum of the ejected gas : δ−→p = δµ0 g(c,−u). (d)

(23)

We shall apply the conservation of 4-
momentum in So, using the data in Eqs. (23
c,d).

δ
−→
P = − δ−→p . (a)

t-comp : δM = −δµ0 g. (b)
x-comp : Mδv′ = δµ0 g u. (c)

Hence, Mδv′ = − δM u. (d)

(24)

Note that (i) The rest mass lost by the
rocket equals the relativistic mass gained by
the ejected gas, according to (b), (ii) Eq. (d)
is valid in So. To validate it in S, we have to
apply the velocity addition formula (8 b).

v + dv =
dv′ + v
1 + dv′ v

c2

≈ (dv′+ v)
(

1− dv′ v
c2

)
≈ v+

(
1− v2

c2

)
dv′.

(25)

Hence, (in the limit dv′ → 0),

dv =

(
1− v2

c2

)
dv′. (26)

This transforms Eq. (24 d) to

dv(
1− v2

c2

) = −u
dM
M

. (27)

Integrating (27) from t = 0 to t = t, set-
ting M = Mi (i for “initial”), and v = 0 at
t = 0, we get[17]

c
2

ln
c + v
c− v

= −u ln
M
Mi

Or,
M
Mi

=

(
c− v
c + v

) c
2u

=

(
1− β

1 + β

) c
2u

.

(28)
The above equation is referred to as the

Ackeret equation[6].
One of the requirements of all Relativis-

tic formulas is that they must converge to
the corresponding N.R. counterparts (if such
counterparts exist) in the N.R. limit v/c →
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0. In this case the N.R. mass formula is (1
b). We shall show that this requirement is
satisfied by the formula (28).

Proof : We set β = v/c. Then in the limit
β→ 0

1
1−β

β→0−→ (1 + β). Hence, (1− β)
β→0−→ 1

1+β .( c−v
c+v
) c

2u =
(

1−β
1+β

) c
2u β→0−→ [(1 + β)−2](

c
2v )(

v
u )

= [(1 + β)
1
β ]−(v/u).

By definition e ≡ Euler’s number[19]

= limx→0(1 + x)1/x.

Hence,
( c−v

c+v
) c

2u
β→0−→ e−(v/u).

Or, M
Mi

β→0−→ e−(v/u),
(29)

same as the N.R. formula (1 b)

Q.E.D.

Is the formula (28) valid when u = c?
To make sure, we shall retrace the steps
from Eq. (23) downward, specializing them
to u = c. Instead of assuming that the gas
is ejected with velocity −u w.r.t. IRF So, we
shall assume that, between the events ΘA

and ΘB, a beam of photons is emitted in the
−x-direction with energy δEo w.r.t the IRF
So. In this case we use Eq. (17) for photon
momentum.

At ΘA :
−→
P = M(c, 0) (a)

At ΘB :
−→
P + δ

−→
P = (M + δM)(c, δv′) (b)

Change in 4-momentum δ
−→
P = (δMc, Mδv′) (c)

4-mom. of the emitted photons : δ−→p = ( δEo
c ,− δEo

c ). (d)

(30)

We shall apply the conservation of 4-
momentum in So, using the data in Eqs. (30
c,d).

δ
−→
P = −δ−→p . (a)

t-comp δM = −δEo

c2 . (b)

x-comp Mδv′ =
δEo

c
(c)

Hence, Mδv′ = −δM c. (d)

(31)

It follows that Eq. (24 d) will be valid for u =

c. As a consequence (28) is also valid for u =

c. We shall rewrite this for this special case

of a for a photon driven rocket[17].

M
Mi

=

√
c− v
c + v

=

√
1− β

1 + β
. (32)

7 The Thrust 4-Force

The 4-momentum of the rocket at the
event ΘA can be written as

−→
P (ΘA) =

M(ΘA)
−→
V (ΘA). We have used Eq. (13), re-

placed mo with M(ΘA). The time difference
between the events ΘA and ΘB is δt w.r.t. S,
and δτ w.r.t. the IRF So. Differentiating

−→
P

w.r.t. τ we get
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d
−→
P

dτ
=

d
dτ

(M
−→
V ) = M

d
−→
V

dτ
+

dM
dτ

−→
V . (33)

To evaluate dM
dτ , we use (24 b)

dM
dτ = −g dµ0

dτ = −gr,
where r = dµ0

dτ

(34)

as defined in paragraph 1 of Sec.3
To get a parallel formula for the photon-

driven rocket we refer to (31 b), and get

dM
dτ

= − 1
c2

dEo

dτ
. (35)

We can combine the two equations into one,
assuming that the rocket is ejecting relativis-
tic mass, either in the form of matter or in the
form of radiation (we shall use the term radi-
ation to mean photons), at the constant rate
of $ kg/s in its rest frame.

For matter emission :

$ = lim
δτ→0

g δµ0

δτ
= g

dµ0

dτ
= gr. (a)

For photon emission :

$ = lim
δτ→0

δE0/c2

δτ
=

1
c2

dEo

dτ
. (b)

(36)

Note that r is constant by assumption,
and g is constant because u is so. Hence $

is constant in line (a). We now assume that
if photons are ejected to generate the reac-
tion force, then dEo

dτ is also constant in line
(b). Then by (34) - (36)

dM
dτ

= −$ = constant (37)

for both matter and radiation.

We now go back to (33), and rewrite it
as follows.

M
d
−→
V

dτ
=

d
−→
P

dτ
− dM

dτ

−→
V

= d
−→
P

dτ + $
−→
V ≡

−→
R (a)

where
−→
R def

=
d
−→
P

dτ
+ $
−→
V (b)

(38)
is the “Reaction 4-Force”, or better still the
Thrust 4-Force[18]. However, we are using
the symbol R instead of T, because the latter
symbol can be confused with time.

In the following equations we write the
(t, x) components of the 4-vectors in So. Us-
ing (24 a), (23 d), (36 a):

d
−→
P
dt

= −d−→p
dτ

= −g
dµ0

dτ
(c,−u)

= −$(c,−u).
from (6) :

−→
V = (c, 0),

since v′ = 0, Γ′ = 1.
from (38 b) :

−→
R = −$(c,−u) + $(c, 0)

= $(0, u) = (0, R).
(39)

In other words, the Reaction 4-vector
has the following components w.r.t So:

−→
R = (R′t,R′x) = (0, R)

where R = $u = gru
= Reaction 3-force, w.r.t.So.

(40)
Note that the (t, x)-components of the

Reaction 4-force
−→
R in So are in agreement

with (22).
We shall now find the (t, x) components

of the Reaction 4-force:
−→
R = (R0,Rx),

in the ground frame S, applying Lorentz
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transformation Eq.(4), corresponding to the
boost: So(−cβ, 0, 0)S, to the (t, x) compo-
nents of

−→
R in the IRF So, shown in (40).

Rt = Γ(R′t + βR′x) = ΓβR. (a)
Rx = Γ(R′x + βR′t) = ΓR. (b)

(41)
Note that the (t, x)-components of the Reac-
tion 4-force

−→
R in S are in agreement with

(22), which we rewrite in the present context
as

−→
R = (Rt,Rx) = Γ

(
Rv
c

, R
)

. (42)

Referring back to Eq. (36)

• For radiation emission R = $c = 1
c

dEo
dτ .

• For matter emission R = $u = gru =

gT, where T = ru is the same thrust
force of non-relativistic mechanics. See
Eq. (1 c). It changes to R = gT as it en-
ters the relativistic domain.

8 The Equation of Motion

We return to Eq. (38 a) and write the equa-
tion of motion[18]

M
d
−→
V

dτ
=
−→
R, (43)

where M = M(Θ) is the instantaneous rest
mass of the rocket at the event Θ, and is a 4-
scalar. All we now have to do is to write the
x-component of the 4-vectors on either side
of the equation, and simplify the same to ob-
tain the acceleration a = dv

dt of the rocket in

the GF S. We shall, however, find it conve-
nient to work out the acceleration ao =

dv′
dτ in

the IRF So, and convert this acceleration to a
usng Eq (12).

Consider the x-component of
−→
V using

(6). The kinematic quantities in So will be
identified with “prime”. Then,

dV
′x

dτ
=

d(Γ′v′)
dτ

= Γ′
dv′

dτ
+

dΓ′

dτ
v′ =

dv′

dτ
= ao,
(44)

since v′= instantaneous velocity of the
rocket in So = 0. Consequently Γ′ = 1.

From (40), the x-component of
−→
R is

R
′x = R = $u. We thus get a simple look-

ing equation of motion, which is valid in So.

M(Θ)ao = $u = constant. (45)

Mass × acceleration is constant. But
mass is not constant. Hence the acceleration
in IRF So is not constant.

We shall write the EoM in the ground
frame S, by converting ao → a, the accelera-
tion in the ground frame S, using (12), which
gives ao = Γ3a.

M(Θ) Γ3a = $u = constant. (a)

Or, M(Θ) Γ3 dv
dt

= $u = constant. (b)
(46)

An alternative version of Eq. (46 b) is

M(Θ)
d(Γv)

dt
= $u = −dM

dτ
u

= −Γ
dM
dt

u = constant, (47)

in which Pomeranz wrote the EoM in his
1969 paper[12]. To see the equivalence be-
tween the two forms one has to show that
dΓ
dt = Γ3 v

c2
dv
dt .
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Now we rewrite Eq. (46 b), using the
mass equation (28).(

c− v
c + v

) c
2u

Γ3 dv
dt

=
$u
Mi

= constant, (48)

where Mi is the initial (rest) mass of the
rocket.

We shall set β = v/c, and c/u = n in
the index of the leftmost factor in Eq. (48).
Here n ≥ 1 is a positive real number greater
than or equal to 1. n = 1 corresponds to
u = c. On the other extreme n → ∞ would
converge to the N.R. EoM shown in (1 e). We
now simplify the left side:

Γ3 =
1

(1− β2)3/2 = [(1 + β)(1− β)]−3/2(
c− v
c + v

) c
2u

=

(
1− β

1 + β

) n
2

(
c− v
c + v

) c
2u

Γ3 dv
dt

= c

[
(1− β)

n−3
2

(1 + β)
n+3

2

]
dβ

dt
.

The EoM (48) now takes a simpler form[
(1− β)

n−3
2

(1 + β)
n+3

2

]
dβ

dt
=

$u
cMi

= k = const. (49)

Let us rewrite the mass equation (28),
setting v = cβ; c/u = n.

M
Mi

=

(
1− β

1 + β

) n
2

. (50)

We assume that the rocket has no pay-
load, all its mass will ultimately be ejected
out to provide the thrust. In other words,
the rocket operates until M→ 0, which hap-
pens when β→ 1.

We shall now show that the above EoM
(49) will converge to the Non Relativistic

EoM as given in (1 e). We shall set $ = gr
as per (36 a), β→ 0 and use the definition of
Euler’s number e, as in (29).

Proof :

[
(1− β)

n−3
2

(1 + β)
n+3

2

]
β→0−→

[
1

(1 + β)
n−3

2

] [
1

(1 + β)
n+3

2

]
= 1

(1+β)n = 1
(1+β)c/u

=
1

[(1 + β)1/β]v/u =
1

ev/u .

Substituting this in (49) we get:

Mie−v/u dv
dt = $u = gru = ru, since g→ 1.

(51)
Thus we get back (1 e).

Q.E.D.

9 Solution of the EoM in
special cases

Example 1. Set n = 3, implying u = c/3.

The reason for choosing n = 3 is two
fold: (1) The EoM shown in (49) will assume
the simplest form, the numerator within the
square brackets becoming 1; (2) We are now
at the threshold of transition from the non-
relativistic (N.R.) to the relativistic domain,
the L-factor is very close to 1, in fact g =

3
2
√

2
= 1.06. Our results obtained here

should be close to the N.R. results, so that
we may feel comfortable that we are on right
track.

We specialize the EoM (49) for this spe-
cial case:
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[
1

(1 + β)3

]
dβ

dt
=

$

3Mi
≡ k3 = constant.

(52)
Integration, subject to the initial condi-

tion: β = 0 when t = 0 leads to the follow-
ing solution:

β =

[
1√

1− 2k3t
− 1
]

; 0 ≤ t ≤ tc. (53)

The reader can verify the answer by differ-
entiating β w.r.t t.

We have written tc to mean “critical
time” when M → 0 as explained below
Eq. (50). In other words, tc is the time at
“burn out”, assuming that the rocket has
no payload, all its mass has ultimately been
ejected out to provide the thrust. This hap-
pens when β→ 1. From Eq.(53):

[
1√

1− 2k3tc
− 1
]
= 1

Or,
1− 2k3tc =

1
4 . ⇒ k3tc =

3
8

Or,
$tc

Mi
=

9
8

.

for the N.R. case :
$tc

Mi
= 1.

(54)

We have plotted the velocity-time rela-
tion (rather the β-t relation) in Fig.1 (a), us-
ing Gnuplot. On the same graph we have
also plotted the N.R. equation (1 f).

We have set Mi = 1 kg, r = 1 kg/s (see
specifications in Sec. 3). Setting u/c = 1/3
in the first of the equations in (2) we get g =

3/
√

8 = 1.06. Hence $ (defined in Eq. 36a)

= g r = 1.06 kg/m. Therefore k3 = $
3Mi

=

0.3535. From Eq (54) the critical time is tc =
3

8×0.3535 = 1.06 s which has been set as the
upper limit on the t axis.

The two plots, Relativistic and Non-
relativistic almost coincide up to t ≈ 0.8 s,
β ≈ 0.5.

In Fig.1 (b) we have plotted dβ
dt = k3(1+

β)3 = 0.3535(1 + β)3. However, in this case
we set the vertical axis to represent the in-
dependent variable β, aligning it (tic-wise)
with the vertical β axis of Fig.(a). The hor-
izontal axis, pointing to the left, represents
the dependent variable dβ

dt . We achieved this
configuration by first plotting dβ

dt versus β

the usual way, then turning the plot anti-
clockwise by 90o. Our objective here has
been to check whether the slope of the β− t
curve in Fig (a) is corroborated by the mea-
sure of dβ/dt in Fig (b). In order to judge the
correspondence, we marked four selected
points on the curve (a) and their correspond-
ing points on (b), wrote the values of dβ

dt for
these points on the upper horizontal axis of
the plot box. Fair correspondence between
these values in Fig(b) and the correspond-
ing slopes in Fig (a) is discernible, suggest-
ing that Eq.(53) is the solution of the EoM
(52)

Example 2. Set n = 1, implying u = c.

This is the photon rocket mentioned in
the Introduction. In this case a jet of photons
flowing out from the tail end of the rocket is
serving as the propellant. We specialize the
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Figure 1: Case I, n=3. Plots for (a) velocity vs time, (b) acceleration vs velocity

EoM (49) for this special case:[
1

(1− β)(1 + β)2

]
dβ

dt
=

$

Mi
≡ ko = constant.

(55)
Integrating from t = 0 when β = 0 to t =

t; β = β

∫ β

0

dβ

((1− β)(1 + β)2 = kot, (56)

we get

β

2(1 + β)
+ ln

√
1 + β

1− β
= kot =

(
$

Mi

)
t.

Or,

t =
(

Mi

$

)[
β

2(1 + β)
+ ln

√
1 + β

1− β

]
(57)

The reader can verify the solution by
differentiating t w.r.t β.

We have plotted the velocity-time re-
lation (rather the β-t relation) in Fig.2 (a).
However in Eq.(57) t is a function of β.
Hence, using Gnuplot we first got β as the
horizontal axis and t as the vertical axis. In
order to reverse their roles we transformed
the plot by (i) a rotation through 90o in the
anticlockwise direction, followed by (ii) a re-
flection about the vertical axis (i.e. about the
new β axis).

In Fig.2 (b) we have plotted dβ
dt (its axis

pointing left) versus β (its axis pointing up-
ward). The procedure, objective, and expla-
nations are the same as in Example 1.

It should be noted that in this case $ is
given by (36 b), which we rewrite and inter-
pret as follows.
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Figure 2: Case II, n=1. Plots for (a) velocity vs time, (b) acceleration vs velocity

$ =
1
c2

dEo

dτ
=

1
c2 × radiative power emitted

from the tail end of the rocket (58)

For the plottings we have taken Mi = 1
kg, $ = 1 kg/s.

How long does the rocket operate? Un-
til β → 1, as mentioned below Eq. (50), and
therefore, by (57), until t→ ∞.

It is seen from the plot in Fig.2 (a) that β

approaches unity or, v approaches c asymp-
totically.

10 Summary

1. It has been assumed that the rocket is
emitting relativistic mass (in the form of
gas/photons) with a constant speed u,
opposite to the direction of the motion
of the rocket.

2. The rate of ejection of relativistic mass
(for both matter and photons) is a con-
stant, represented by $, and defined in
Eq. (36).

3. The mass-velocity relation (Ackeret for-
mula) (28) was rederived, and its valid-
ity for both matter and radiation was es-
tablished. See Eq. (31).
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4. The mass-velocity formula (28) has
been shown to converge to the corre-
sponding N.R. formula (1 b). See steps
in (29).

5. The 4-dimensional (Minkowskian)
equation of motion (EoM), shown in
the frame-independent form (43), in-
volves instantaneous mass of the rocket
M (which is a 4-scalar), instantaneous
4-velocity

−→
V and the Reaction (Thrust)

4-vector
−→
R.

6. The same EoM takes the form (45) in the
instantaneous rest frame So, and, upon
Lorentz transformation, the form (46) in
the ground frame S.

7. With simple manipulations, the EoM in
S changes to a simpler looking equation
(49), where n = c/u.

8. The same EoM (49) has been shown to
converge to the corresponding N.R. for-
mula (1 e).

9. The EoM (49) was specialized for two
cases, namely, (i) n = 3, corresponding
to u = c/3, and written as (53), and (ii)
n = 1 corresponding to u = c written as
(57).

10. The corresponding EoMs were solved
to obtain the relationship betweem v
and t, written as Eq (53) for the case
(i); and Eq. (57) for the case (ii). The
velocity-time relations have been plot-
ted for both cases, as shown in Figs.1
and 2 respectively. For the case (i) we

have set Mi = 1 kg; r = 1 kg/s. For
the case (ii) we have set Mi = 1 kg;
$ = 1 kg/s. The following features can
be easily noticed. For the case (i) the
plot of the relativistic formula (53) fol-
lows the corresponding N.R. formula (1
f) closely, upto t ≈ 0.5 s, or β ≈ 0.8. For
the case (ii), β→ 1 asympmtotically.
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Abstract 

With a view to bring out the fact that some 

cornerstone researches in physics were carried out 

by scientists in their youth, we have dwelt upon the 

major contributions of more than a dozen such 

illustrious physicists emphasizing the works done by 

them during the age 18 to 32 years. 

 

*Retired: The article is dedicated with affectionate 

regards to my dear Ribhu, Kusum and Suresh Ji. 

 

1. Introduction 

It is generally believed that scientists are eccentric 

people with long grey hair implying that science is 

created by the people who are old enough to have vast 

knowledge as well as experience. This impression 

stands in contrast with the statement “almost 

everything that is great has been done by youth” by 

Benjamin Disraeli, the famous British politician and 

writer of the 19th century. No doubt, experience and 

professional maturity are important, but it is equally 

true that the youth can take risks to follow the roads 

less travelled rather than being conventional and they 

are passionate to pursue intellectually challenging 

work. In fact, a good number of path-breaking 

discoveries have been made by the scientists when 

they were young, say, in the age group 18 to 32 years.  

 

This article briefly describes achievements of some 

such celebrated physicists highlighting the seminal 

contributions these stalwarts made in their youth and 

decisively influenced the course of development in 

physics. 

2. Galileo Galilei (1564 - 1642) 

Galileo, who is known by his first name rather than 

by the conventional family name, was the Italian 

physicist and astronomer. He is usually referred to as 

the ‘father of scientific method’ and ‘founder of the 

experiments - based physics’, because of his 

revolutionary approach to seek the truth in Nature 

that led to recognition of science as distinctly 

different from philosophy, introducing the usage of 

mathematics in physics, emphasizing the importance 

of experimental verification of ideas and repeatability 

of the experiments, and giving impressive 

demonstrations in his classes.  

He is credited for experimentally establishing the 

laws of the pendulum, of the bodies moving under the 

action of gravity (vertical fall and, also, along the 

sloping surfaces) and of the parabolic ballistics. He 

also proposed the basic principle of relativity, 

according to which the laws of physics are the same 

in all the frames of reference moving with respect to 

one another at a constant speed in a straight line (the 

inertial frames). This principle provided the basic 

framework for Newtonian mechanics and was used 
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as a postulate in Einstein's special theory of relativity. 

He also performed experiments on sound and put 

forward a theory of tides. He developed a hydrostatic 

balance to measure the pressure in a fluid and weigh 

small objects, a gas bulb and attached water 

containing tube based thermoscope (a precursor of 

thermometer), a lightweight military compass, 

improved techniques for grinding of lenses, set - up 

for finding strength of materials, and a pendulum 

based pulsimeter to measure the pulse rate. He used 

microscope to study the organs of the insects.   

It was he who for the first time used the newly 

invented refracting telescope, having a magnification 

of about 1000, for conducting pioneering 

astronomical researches and observed the four large 

satellites of Jupiter (now called Galilean moons), 

phases of Venus, the ring of Saturn, mountains on the 

Moon, dark spots on the Sun and the nature of the 

Milky Way. His marvelous works on astronomy, first 

part of which was brought out in the form of a booklet 

in 1610, upheld the Copernican views favouring 

heliocentric system over the geocentric system of 

Aristotle and Ptolmey. Since the Roman Catholic 

church accepted the geocentric system, Galileo was 

summoned to face the Inquisition in Rome and was 

warned in 1616 not to support the Copernican system. 

However, he published his arguments in the form of 

dialogues in a book in 1632 for which he was called 

for Inquisition again in 1633. As a punishment, his 

book was banned, and he was essentially put in 

isolation under house arrest till his death. 

His first important experiment in physics was 

performed when he was less than 20 years old. While 

in a cathedral he noticed the oscillations of a 

chandelier hanging from the ceiling and, comparing 

these with his own pulse rate, concluded that the time 

- period of oscillations of the chandelier is 

independent of the amplitude. Then he confirmed this 

aspect by performing an experiment at home in which 

he used two identical pendulums subjected to 

oscillations with significantly different amplitudes 

and varying lengths as well as weights suspended. 

The time - period changed only when the length of 

the pendulum was altered. And this is what we find 

in the case of a simple or a compound pendulum as 

long as its oscillations are simple harmonic. It is 

worth noting that, later, this observation formed the 

basis of the design of the clocks. The detailed 

description of the hydrostatic balance was published 

in the form of a small book in 1586 and this invention 

made him prominent in the scholarly world for the 

first time. Furthermore, the studies pertaining to 

falling bodies and projectiles were carried out when 

he was 25 years old or so. 

3.  Isaac Newton (1642 – 1727) 

Newton, one of the founding fathers of physics, was 

a great British physicist and mathematician, who 

contributed immensely to the scientific revolution in 

the 17th century by nurturing physical science (then 

referred to as natural philosophy) in its infancy. His 

prodigious contributions include the law of universal 

gravitation, three laws of motion, the scientific 

concept of force, principles of calculus (developed 

independently of his contemporary Leibnitz and 

called this ‘fluxions’), generalised binomial theorem, 

techniques for studying properties of polynomials 

and finding their zeros, methods for using and 

reverting power series, the theory of finite 

differences, classification of cubic plane curves (the 

polynomials of degree three in two variables), and so 

on.  

He used his theory of gravitation to derive the 

Kepler’s laws of planetary motion, describe the 

trajectory of the comets, explain the precession of the 

equinoxes, predict the oblate spheroidal shape of the 

earth, determine the mass of the planets, and many 

other phenomena. This pioneering work showed that 

the same law is applicable to the description of the 
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motion of bodies on the earth and, also, of the 

celestial objects, making this a universal law. It was 

in contradiction with the Aristotlean view that the 

earth and the heavenly bodies were governed by two 

different sets of laws. Besides, the results of these 

derivations helped in establishing the heliocentric 

model of the solar system. His researches in 

mechanics are summarized in the highly acclaimed 

three volumes treatise ‘Principia’ written in Latin, 

which was published in 1687 and led to his 

recognition as a great physicist. This book laid the 

foundation of Classical Mechanics. 

He carried out exhaustive experiments on dispersion 

of light, chromatic aberration of lenses and the 

formation of Newton’s rings. He presented a theory 

of colours and the corpuscular theory of light. He 

made the first 20 cm long reflecting telescope in 

1668, which brought him to the attention of the Royal 

Society and made him famous in Europe. He 

compiled his contributions to optics in the book 

‘Opticks’ in 1704. In this book, written in English, he 

also described the use of multiple prism arrays; this 

idea has been now used in the development of narrow 

beam tuneable lasers.  

Newton also put forward an empirical law of cooling 

and developed an analytic expression for the speed of 

sound in air. He spent nearly a decade on experiments 

pertaining to Alchemy, which was essentially the 

chemistry of that time. In 1696, he was appointed a 

Warden of the Royal Mint where he worked with full 

devotion leading to great efficiency in the operations 

of the mint and successful prosecution of the 

counterfeiters and other miscreants. As a reward, he 

was promoted as the Master of the Mint after about 

three years. 

He conducted fascinating researches on theory of 

gravitation and its varied applications, the basics of 

calculus and dispersion of light, during August 1665 

and April 1667 (i.e. between the ages 23 to 25 years) 

when the University of Cambridge was closed 

because of plague and he was forced to stay at his 

home. Most of the work on optics (including his 

theory of light and colour) and making of the 

reflecting telescope were accomplished by the age of 

26. The studies pertaining to the power series were 

carried out before turning 27.  

4. James Clerk Maxwell (1831 – 1879) 

 The Scottish theoretical physicist Maxwell is 

renowned for his stupendous contributions to 

development of the kinetic theory of gases (which he 

did independently of his contemporary physicist 

Ludwig Boltzmann), works on thermodynamics and 

formulation of the theory of electromagnetism 

including the set of differential equations describing 

the electromagnetic fields. These equations, now 

reduced to four and called the Maxwell equations, 

were obtained after modifying the Ampere’s law by 

introducing the concept of displacement current, 

provided mathematical form to Faraday’s physical 

ideas on electric and magnetic fields, brought out the 

fact that these two fields are inseparably connected 

with each other (the first incidence of unifying two 

then known fundamental forces of nature) and that all 

the electromagnetic fields are attributable to electric 

charges and currents. These fields are radiated 

outward as waves from the source with a constant 

speed, which numerically turned out to be close to the 

speed of light in that medium. This made him assert 

that light is an electromagnetic radiation produced by 

an oscillating charge and that it is one of a large 

family of such radiations travelling through a 

supporting medium called luminiferous ether. This, 

in turn, brought together the electromagnetism and 

optics. He presented his revolutionary views in the 

form of a mathematical theory of electromagnetism 

in the book ‘A Treatise on Electricity and 

Magnetism’, and this work established him as one of 

the greatest classical physicists. We now know that 
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the existence of electromagnetic waves was 

experimentally established by Hertz in 1888, that the 

electromagnetic spectrum ranges from about 10-13 m 

to 105 m and that ether is a non-existent entity. 

In the kinetic theory of gases, Maxwell obtained an 

expression for the velocity distribution of gas in a 

container in thermal equilibrium at temperature T 

using statistical ideas and investigated many 

associated aspects including the transport properties 

like viscosity, thermal conductivity and diffusion of 

the gases. He also introduced the concept of an 

intelligent tiny creature, now known as the 

Maxwell’s demon, to bring out a possible violation of 

the second law of thermodynamics and thereby the 

statistical nature of entropy and derived the famous 

thermodynamic relations now named after him. 

These works constitute the content of his book 

‘Theory of Heat’ (1871).  

He mathematically showed that Saturn’s rings are 

composed of numerous small particles each 

independently orbiting the Saturn, which was proved 

to be correct in 1980s by the first Voyager space 

probe. In addition to these, he studied the colour 

vision and coloured photography theoretically as well 

as experimentally, designing his own experimental 

set ups; investigated the effect of stresses on the 

polarized light passing through blocks of gelatin 

leading to the discovery of photoelasticity; developed 

the method of dimensional analysis; investigated the 

rigidity of rod-and-joint frameworks as used in the 

construction of many bridges; and brought into focus 

the contributions of Henry Cavendish by 

painstakingly editing his original notes. 

Maxwell’s genius came to the fore when (i) at the 

tender age of 15 he submitted an original paper on the 

drawing of oval curves to the Royal Society of 

Edinburgh, (ii) contributed research papers on 

‘equilibrium of elastic solids’ and on ‘rolling curves’ 

to Transactions of the Royal Society of Edinburgh 

three years later, (ii) presented the work on 

‘Faraday’s lines of force’ when he was 24, (iii) 

explained the probable nature of Saturn’s rings as a 

young man of 26, (iv) developed the kinetic theory of 

gases in 1859 – 60, and (v) showed equality of the 

speed of propagation of an electromagnetic field with 

that of light at the age of 31. Interestingly, in the first 

two instances the executives of the society considered 

him to be too young to address the members and the 

papers were read by other persons. Nonetheless, he 

did get recognition as an accomplished 

mathematician. 

5.  Ernest Rutherford (1871 – 1937) 

Rutherford, who was born in New Zealand and 

carried out his researches in Britain and Canada, is 

remembered as an extremely skilled and 

accomplished experimental physicist and father of 

nuclear physics not only because he developed the 

nuclear model of the atom but also made numerous 

important contributions that laid the foundation of the 

subject.  

He established that radioactive decay involves 

spontaneous transformation of one chemical element 

to another and is a completely random process 

governed by a decay equation (now known as 

Rutherford – Soddy disintegration formula) 

involving half – life or mean life which is 

characteristic of the element and used this for 

radiometric dating; investigated various properties of 

the charged constituents of the radiation emitted by 

natural radioactive substances, named these 

andparticles and identified these as helium 

nuclei and electrons, respectively (later, he gave the 

name radiation to the third electrically neutral 

component discovered by Villard); developed the 

scintillation detectors and ionization chambers for 

counting the particles in his studies; discovered a 

number of new radioactive materials; performed with 

Geiger and Marsden the illustrious experiment on 

scattering of particles from gold foil and 

interpreted its surprising result that a very small 

fraction (about 10-4) of incident particles got 

deflected by more than 900 as an evidence that the 

atoms have positive charge and most of the atomic 

mass is concentrated in a very small central region, 

later called the nucleus, which gave rise to the 

Rutherford’s nuclear model of the atom where the 
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negative charge was assumed to be uniformly 

distributed over a sphere having radius equal to that 

of the atom; carried out experiments of bombarding 

the 14N atoms with particles which yielded 16O and 

another particle which he named the proton (this was 

the first nuclear reaction). He also argued that some 

neutral particle must be present in the nucleus to 

check the strong Coulombic repulsion effect of the 

positively charged protons and called this 

hypothetical particle the neutron (it was discovered 

by his student Chadwick in 1932). He presented an 

authoritative exposition of radioactive properties of 

materials in his book “Radioactivity’.  

Before embarking upon the researches in 

radioactivity he had studied the effect of 

electromagnetic waves on magnetic materials; 

invented a detector for radio waves; investigated the 

conductive effects of x – rays on various gases that 

helped Thomson in concretizing the discovery of 

electron in 1897; worked on the effect of electric field 

on mobility of ions; etc. He along with Moseley 

carried out experiments by bombarding different 

elements with cathode rays and concluded that each 

element could be assigned an atomic number which 

determines its properties. During the Second World 

War he contributed to problems pertaining to the 

submarine detection. 

Rutherford was around 23 years when he performed 

many experiments on the effect of electromagnetic 

waves on magnetization and did some work on the 

Tesla coil resulting into two publications. The 

following year he extended these efforts towards 

detection of electromagnetic waves and developed a 

detector for radio waves. The studies on conductive 

effects of x – rays on gases were carried out when he 

was 26. Naming and differentiating the and  rays 

and investigation of some of their properties and the 

discovery of some new radioactive elements were 

mainly carried out during the age 27 - 29 years. The 

concept of half – life of the radioactive substances 

and the theory of radioactive decay were presented 

when he was 31years old. 

 

6. Albert Einstein (1879 – 1955) 

The exceptionally gifted German by birth and Swiss 

and American citizen by choice, the philosopher and 

theoretical physicist Einstein had superb ability to 

grasp precisely a specific simple situation and 

analyze this to arrive at a general principle. He 

created the revolutionary theories of special and 

general relativity almost single handedly, presented 

novel theories for the photoelectric effect as well as 

the Brownian motion, contributed a lot to the 

development of quantum mechanics particularly its 

philosophy (his discussions with Bohr and the 

famous publication with Podolsky and Rosen 

referred to as EPR paradox are typical examples), 

gave the mathematical formulation of stimulated 

emission that forms the basis of working of much 

later invented MASER as well as LASER, and tried 

to unify the gravitational and electromagnetic fields. 

He used the concept of quantization of lattice 

vibrations in solids to theoretically account for the 

general aspect of temperature dependence of their 

specific heat and, also, employed the idea of density 

fluctuations to explain the phenomenon of critical 

opalescence. He published research papers on what 

came to be known as Bose-Einstein statistics for the 

ideal or noninteracting gases and investigated the 

concept of Bose – Einstein condensation (which was 

initially used to explain the superfluidity in 4He and 

has been now properly observed in atomic gases like 
7Li, 23Na, 87Rb, 133Cs, etc cooled down to 

temperatures of few nanokelvin).  

 Assuming that light is not only emitted in energy 

packets as conceived by Planck but also travels and 

interacts in quanta he expounded the empirical laws 

of photoelectric effect by asserting that the electrons 

are ejected from the metals due to the collision of 

light quanta (now called photons) with these. This put 

Planck’s work on the quanta of electromagnetic 

radiation on firm footing. The phenomenon of 

Brownian movement was explained by considering 

the effect of random bombardment of a particle by its 

surrounding molecules in the fluid yielding 

experimentally verifiable formulae and thereby it 
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made the molecular theory of matter to be acceptable 

beyond doubt.  

In the most important of his early contributions 

namely the special theory of relativity, he reconciled 

Maxwell's equations for electricity and magnetism 

with the laws of mechanics by assuming the principle 

of relativity as well as the constancy of speed of light 

in all the inertial frames (thus, making the 

measurement of time and length velocity dependent). 

This marvelous theory rendered the idea of 

luminiferous ether to be redundant; showed that no 

material object can have speed greater than that of 

light in vacuum; brought in radical changes in the 

classical concepts of space and time as separate 

entities leading to the 4-dimensional space-time 

world; made length, time, the resultant of addition of 

two velocities, and mass  to be variable with velocity 

(wherein the changes brought in these quantities 

become significant when their speeds are a 

substantial fraction of the speed of light, the so called 

relativistic speeds) and led to the famous relationship 

giving equivalence of energy and mass. The last 

result is the principal concept used in explaining the 

binding energy in the atomic nuclei, the energy 

produced in the nuclear reactions, working of nuclear 

reactors as well as the nuclear bomb, creation and 

annihilation of electron – positron pair, etc.  

According to the general theory of relativity, gravity 

is a consequence of  the distortion produced in the 

shape of space-time continuum by the masses; the 

light rays from distant stars passing close to a heavy 

body like sun would bend as these move through the 

space-time distorted by this object; the motion of the 

planets would be affected (precession of the 

perihelion of Mercury is the most conspicuous); 

spectral lines of the atoms originating from the stars 

would show gravitational red shift, and so on. The 

equations of the general theory of relativity 

demanded that the Universe should not be static - it 

should be either expanding or contracting. Later, 

Hubble’s experiments supported the expanding 

condition. As such this theory is the key ingredient of 

the theories for big bang and, also, the black holes. 

Einstein also applied the general theory of relativity 

to model the large-scale structure of the universe and 

to predict the existence of gravitational waves. It is 

important to note that almost all his theoretical results 

have been found to be in conformity with the findings 

of the relevant experiments. 

In 1905, when Einstein was a young man of 26, he 

published his groundbreaking research papers on the 

photoelectric effect, the Brownian motion and the 

special theory of relativity in the German journal 

Annalen der Physik, making this year to be referred 

to as the miracle year of physics. Prior to this, in 1902 

and 1903, he had used the ideas from statistics to 

study the effect of finite atomic size on diffusion. He 

was 28 when he employed the concept of quantum 

vibrations to present the Einstein model of solids that 

partially explained the temperature dependence of 

their specific heat. Also, the principle of equivalence 

hypothesizing that a homogeneous gravitational field 

must be equivalent to the field arising in a suitably 

accelerated frame of reference was developed in 

1911. 

7. Niels Henrik David Bohr (1885 - 1962) 

The Danish theoretical physicist Bohr is essentially 

revered for his remarkable works on the structure of 

hydrogen and other atoms and the explanation of the 

radiation emanating from these; the correspondence 

principle; the principle of complementarity; the 

compound model of nucleus; and enormous 

contribution to the epistemological aspects, including 

the Copenhagen interpretation, of quantum 

mechanics as a host (at Institute of Theoretical 

Physics, Copenhagen, where he was director) and 

mentor to many talented young minds involved in the 

creation of this subject besides being active 

participant in these developments and their chief 

defender.  

He worked on problems of nature of nuclear 

transformations, theory of energy loss of - particles 

on passing through matter and recognized the basis 

for the existence of nuclear isotopes. He also worked 

on electron theory of metals, explanation of optical 

spectra of helium, problem of consistency in applying 
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the principles of quantization to the electromagnetic 

fields and applied his complementarity principle to 

biology. He used his correspondence principle with 

prudence to elucidate the structure of complex atoms 

and their spectra, and the structure of the periodic 

table even before enunciation of Pauli’s exclusion 

principle and the Dirac’s theory of electron spin. He 

predicted the existence of a new zirconium-like 

element, which was called hafnium after the Latin 

name for Copenhagen.  

He was deeply involved in the execution of 

Manhattan project, establishment of CERN as well as 

Research Establishment Risø of the Danish Atomic 

Energy Commission.  

In his model of the atom, he postulated that the 

electrons revolve in stable orbits (around the atomic 

nucleus), characterized by a discrete angular 

momentum value which is integer multiple of ℏ and 

that these can jump from one permitted energy level 

(or orbit) to another emitting or absorbing 

electromagnetic radiation of energy equal to the 

difference of energy of the two levels involved.  

According to the principle of complementarity, items 

in the quantum world could be separately analyzed in 

terms of contradictory properties, like behaving as a 

wave or a stream of particles. The correspondence 

principle asserts that in the limit of large quantum 

numbers the quantum aspects of a system described 

by quantum mechanics become irrelevant and the 

results reduce to that of classical physics.  

In the framework of compound nucleus model, the 

nuclear reactions occur in two stages: (i) the 

incoming particle is completely absorbed by the 

target nucleus leading to a new, highly excited and 

unstable intermediate nucleus called the compound 

nucleus; (ii) the compound nucleus, which has a 

lifetime of the order of 10-16 s or so, disintegrates into 

the product nuclei and particles in one or more ways 

depending on its excitation energy.  

  Bohr was 28 when he put forward the highly 

acclaimed model of hydrogen atom (which accounted 

for most of the then available experimental data on 

hydrogen spectra) and the principle of 

correspondence and 21 when as an undergraduate 

student he completed a brilliant gold medal winning 

project on measurement of surface tension by 

studying vibrating fluid jets covering its experimental 

as well as theoretical aspects and competed with the 

established scientists and engineers.  

8. Arthur Holly Compton (1892 – 1962) 

The American physicist Compton won the 

international recognition for the notable experiments 

on scattering of x – rays from materials, the studies 

of cosmic rays and the leading role in the Manhattan 

project on the development of atomic bomb.  

His most important contribution to the field of x – 

rays is the finding that the spectrum of the radiation 

scattered from materials where electrons could be 

taken to be almost free has two peaks – one 

corresponding to the incident wavelength and the 

other at a higher wavelength with a shift increasing 

with increase in the angle of scattering and its 

explanation using Planck’s quantum theory, together 

with the laws for conservation of energy and linear 

momentum, which made the concept of photon 

completely acceptable (this scattering is known as 

Compton effect). The other works on x – rays are 

observation that ferromagnetism arises from the 

alignment of electron spins in materials; proving that 

the radiations scattered from elements with atomic 

number Z = 1 through 16 are polarized; using ruled 

diffraction gratings for measurement of x – ray 

wavelength; discovering the total reflection of x -

rays; and the accurate determination of number of 

electrons in atoms. He wrote few detailed books on 

importance and studies pertaining to x- rays.  

His extensive investigations on cosmic rays at 

different altitudes and latitudes, incorporating the 

seasonal or temperature effect, established the 

geomagnetic latitude effect and that these radiations 

mainly consist of charged particles circulating in the 

space. During the execution of Manhattan project, he 

was director of the Metallurgical Laboratory at the 
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University of Chicago, where the first nuclear reactor 

was built. In addition to these, he carried out some 

work on absorption and scattering of  - rays; 

development of sodium vapour lamp and aircraft 

instrumentation. 

 The work on Compton effect or Compton scattering 

was carried out when he was around 31 years old. As 

a young man of 21, he performed an experiment 

which demonstrated the rotation of earth by studying 

the motion of water in a circular tube. 

9. Wolfgang Ernst Friedrich Pauli (1900 – 

1958) 

The Austria born theoretical physicist Pauli, who 

later became the citizen of Switzerland and USA, 

became immortal for his celebrated exclusion 

principle, idea of spin (to overcome the lack of 

agreement between the findings of the quantum 

theory and the experimental data on atomic and 

molecular spectra) and its theory in the framework of 

nonrelativistic quantum mechanics, immense 

contributions to quantum mechanics particularly as a 

key figure in the development of its Copenhagen 

interpretation, predicting the emission of an 

electrically neutral and almost massless particle in the 

beta decay of radioactive nuclei in order to explain 

the continuous energy spectrum of beta decay (these 

were called neutrino by Fermi), explanation of the 

hydrogen spectra using matrix mechanics, quantum 

theory of ionized diatomic hydrogen, introducing 

grand canonical ensemble in quantum statistics, 

theory of temperature independent paramagnetic 

behavior arising from the interaction of electron spins 

in metals with the magnetic field (known as Pauli 

paramagnetism), works in quantum field theory as 

well as quantum electrodynamics, formulation of the 

spin - statistics theorem establishing connection 

between the spin of a particle and its statistical 

properties, and meson theory.  

Interestingly, when after some shocking happenings 

in the family he went into depression and was under 

the treatment of a psychiatrist and psychotherapist, he 

made significant contributions to psychiatry through 

his criticism of its epistemology. Besides he was a 

strong critic of modern synthesis of evolutionary 

biology. He was genius as well as perfectionist who 

used to have many new ideas, analyzed a problem in 

detail and went deep into this with full earnestness. 

His ruthless rigour applied not only to his own work, 

but to the work of others as well. This made him to 

be referred to in the physics community as the 

"conscience of physics". 

 Pauli published his first research paper on general 

theory of relativity at the age of 18 and contributed a 

superb 237 pages master exposition of special and 

general theories of relativity to the Encyclopedia of 

Mathematical Sciences when he was 21; this was 

later published as a well - received monograph and 

was highly admired by Einstein himself for its 

insight, systematic presentation and profoundness of 

treatment. The proposals for the two – valued 

quantum number for atomic electrons (which was 

later identified as spin) besides principal quantum 

number, orbital quantum number and magnetic 

quantum number and the famous exclusion principle 

were put forward at the age of 25 or so, while that for 

the emission of neutrino together with the particles 

in radioactivity was given at the age of 30. He used 

Heisenberg’s matrix mechanics to explain the 

hydrogen spectra in 1926 making this more 

acceptable and worked on the grand canonical 

ensemble in the framework of quantum statistics in 

1927. 

10. Enrico Fermi (1901 – 1954) 

 Fermi, who was native of Italy and later became an 

American citizen, was a rare example of an excellent 

theoretical as well as experimental physicist. On the 

theoretical side, he investigated the behavior of 

degenerate electron gas leading to the Fermi – Dirac 

statistics which soon formed the basis of electron 

theory of metals and the theory of thermodynamic 

equilibrium in white dwarfs, and is applicable to a 

system consisting of particles having half - integer 

spin; introduced the concept of weak interactions and 

used it together with the newly suggested massless 

particles (naming these neutrinos) to develop a 
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mathematical theory of emission by unstable nuclei 

accounting for their continuous energy spectrum and 

the decay rate (this, in turn, helped in establishing 

spectroscopy as an important technique for the 

determination of nuclear structure); presented the so 

called Thomas - Fermi model for the heavy atoms 

which was later extended to molecules, solids and 

even nuclei and can be viewed as a forerunner of the 

modern density function theory; obtained the Fermi 

age equation for the diffusion of neutrons slowing 

down in a medium like graphite, heavy water, etc; 

interpreted the latitude effect of cosmic rays and also 

gave a theory of origin of these rays; put forward the 

idea that the pion could be a composite particle 

(laying basis for the study of quarks); worked on the 

Fermi – Pasta – Ulam - Tsingou problem which laid 

the foundation of the nonlinear dynamics and brought 

out the importance of computer simulations in 

physics.  

His major experimental contributions include nuclear 

reactions in heavy elements bombarded by slow 

neutrons and the production of new radionuclides; 

design and commissioning of the first nuclear reactor 

(the Chicago pile I) using the controlled nuclear chain 

reaction as a part of the atomic bomb programme of 

USA, which made him to be recognized as architect 

of the nuclear age; determination of mean life of 

neutron using the so called Fermi bottle; effect of 

magnetic field on mercury vapours; investigation of 

pion – nucleon interaction. His caliber to get good 

approximate results with little or no actual data has 

led to such an estimation being called Fermi estimate. 

He published his first three research papers on some 

aspects of electrodynamics, special as well as general 

theories of relativity in 1921 - 22 which bore a mark 

of his mathematical talent. The work on Fermi – 

Dirac statistics was carried out at the age of 25, while 

the Thomas – Fermi model of atoms was presented in 

1928. The theory of transformation incorporating 

the weak interactions was developed at the age of 32 

years. 

 

11. Werner Karl Heisenberg (1901 – 1976) 

The brilliant German theoretical physicist and 

philosopher Heisenberg was one of the pioneers who 

used the principles of abstract mathematics and depth 

in the understanding of physics to develop the 

revolutionary subject of quantum mechanics. Among 

his many research works the two outstanding ones, 

which brought him recognition as a genius, are the 

treatment of quantum transitions in terms of matrices 

leading to the matrix mechanics formalism of 

quantum mechanics and enunciation of the amazing 

uncertainty principle. His matrix mechanics 

(finalized in collaboration with Born, Jordan and 

Kramers) correctly explained the frequencies and 

relative intensities of hydrogen spectra.  

He also made important contributions to the theories 

of the hydrodynamics of laminar and turbulent flows, 

theoretical explanation of the Helium spectrum and 

the anomalous Zeeman effect, modeling of 

ferromagnetism, the relativistic quantum field theory, 

the neutron – proton model of the atomic nucleus, 

theory of cosmic rays, unified field theory of 

elementary particles, theory of positron, the S-matrix 

theory for particle interactions, and problems of 

plasma physics as well as thermonuclear processes.  

He played the key role in planning the nuclear 

reactors in West Germany. In fact, he showed as early 

as December 1939 that nuclear energy could be 

obtained from 238U by slowing down the energetic 

neutrons by passing through heavy water or graphite 

and that enriched 235U would be needed to get an 

explosive. In addition to these, he wrote 

philosophical essays and articles for the general 

audiences.  

Heisenberg was a young man of 24 when he brought 

out his first landmark research paper on matrix 

mechanics, which was followed by the development 

of the uncertainty principle after 2 years. Prior to this 

at the age of about 22, he modified Bohr’s theory of 

atoms by introducing the idea of half - integer 

quantum numbers to explain the then perplexing 

helium spectrum and the anomalous Zeeman effect. 
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The model for ferromagnetism was put forward when 

he was 27; this was later simplified by Ising to 

understand various features of the ferromagnetic 

materials. The papers on relativistic quantum field 

theory with Pauli appeared in 1929 and 1930, while 

his work on the nuclear model was published in 1932 

– 33. 

12. Paul Adrien Maurice Dirac (1902 – 1984) 

A bachelor’s degree holder in electrical engineering 

and a master’s degree in mathematics, the great 

British theoretical physicist Dirac earned his place in 

the history of physics as one of the creators of 

quantum mechanics and the primary versions of 

quantum field theory as well as quantum 

electrodynamics (the modern theory of interaction of 

electromagnetic radiation or photons with charged 

matter).  

He developed a transformation theory based 

formalism of quantum mechanics, introduced the 

idea of q numbers and of bra – ket vectors; showed 

relationship between the commutator and the Poisson 

brackets; proved that the matrix mechanics put 

forward by Heisenberg and wave mechanics of 

Schrodinger differ only in the sense that the former 

lays emphasis on the dynamical variables while the 

latter on the state functions; successfully unified the 

concepts of special theory of relativity and of 

quantum mechanics to present his monumental 

relativistic quantum theory of electron giving correct 

explanation of its spin as well as the  magnetic 

moment, accounting for the fine structure of the 

hydrogen spectrum, predicting the existence of 

positively charged anti-electrons or positrons (which 

were experimentally detected after about 4 years in 

the cosmic rays and now find applications in positron 

emission tomography of human body and positron 

annihilation spectroscopy of materials) and of 

creation as well as annihilation of electron – positron 

pair. The interpretation leading to the idea of positron 

is referred to as hole theory and this gave rise to the 

speculation on the existence of antimatter.  

Dirac also published research papers on special and 

general relativity, old quantum theory, 

thermodynamics, classical as well as quantum 

statistical mechanics including the theory of the 

particles that obey Pauli exclusion principle (now 

known as Fermi – Dirac statistics), and generalized 

Hamiltonian dynamics and theory of gravitation.  

With a view to have greater symmetry in the 

Maxwell’s equations of electromagnetism, he put 

forward the concept of a magnetic monopole and its 

theory though this has not yet been found. As a 

mathematical tool to handle the problems he 

introduced an improper function, which has been 

named Dirac - function.  

In addition to the above mentioned researches, he 

worked with Kapitza on an experiment on not much 

successful separation of isotopes and explored the 

possibility of diffraction of electrons from grating of 

standing light waves (the Kapitza – Dirac effect, 

which was experimentally observed much later in 

1980s using laser). 

Dirac was a solitary quester whose researches 

displayed his mathematical prowess as he earnestly 

believed that the physical laws should have 

mathematical beauty and that a theoretical physicist 

should place more trust in mathematical formalism 

and follow its lead even if physical interpretation of 

the formulae temporarily lags behind. 

It may be mentioned that the originality of ideas in 

the works published by Dirac in his youth is superb. 

His series of innovative research papers pertaining to 

the formulation of quantum mechanics started 

appearing when he was nearly 23 years of age and the 

glorious relativistic quantum theory of electron in the 

form of Dirac wave equation and the associated 

predictions was published at the age of 26 or so. The 

derivation for statistical distribution of particles with 

half integer spin appeared in 1926 while the quantum 

theory of emission and absorption of radiation 

leading to the birth of quantum field theory and 

quantum electrodynamics was presented in 1927. His 

masterpiece monograph ‘The Principles of Quantum 
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Mechanics’ was published at the age of 28 when he 

also put forward the hole theory. The prediction 

regarding the existence of magnetic monopoles was 

made about a year later. In 1933, he examined the 

possibility of developing quantum mechanics from 

the Lagrangian and this idea was later used by 

Feynman to develop the beautiful path integral 

version of quantum mechanics. 

13. Carl David Anderson (1905 – 1991) 

Anderson was an American experimental physicist 

who is best known for discovering two new particles 

positron and muon. With a view to investigate the 

composition of the cosmic rays, he placed his cloud 

chamber in a specially designed powerful magnet and 

observed tracks in some of the photographs that could 

be explained only by assuming the presence of 

particles having the same mass as electrons and equal 

but opposite charge. This was in conformity with the 

particle predicted by Dirac. He confirmed the 

existence of positron by passing highly energetic - 

rays emitted by the natural radioactive nuclide 208Tl 

into other materials, resulting in the creation of 

positron - electron pairs. Later, Anderson and his 

student used the same set - up in the well - planned 

experiment involving lot of hard work that led to the 

discovery of negatively charged muons in the cosmic 

rays, whose rest mass was finally found to be 207 

times that of the electron; magnitudes of its charge 

and spin are the same as for an electron.  

During the second world war he carried out research 

in solid-propellant artillery rocketry. Before 

embarking on the study of cosmic radiations which 

was continued after the war also and was 

supplemented with studies in particle physics, he 

investigated the space distribution of photoelectrons 

emitted from various gases by the x-rays.  

The experiments leading to discovery of the positron 

and the muon were performed when Anderson was 

27 and 31 years old, respectively. 

 

14. Lev Davidovich Landau (1908 – 1968) 

The prominent Russian theoretical physicist and 

excellent teacher Landau made a mark for a wide 

range of his research activities covering different 

areas of physics and the set of 10 extremely well 

written books constituting essential course for 

theoretical physics with Lifshitz as coauthor.  

His important contributions include empirical 

considerations based pioneering theory of liquid He 

II that explained reasonably well the hydrodynamic 

behavior and other experimental observations below 

2 K of superfluid helium and also led to criterion for 

the existence of super flow; introduction of the 

concept of density matrices as a mathematical tool in 

quantum mechanics and its use in quantum statistical 

mechanics; studying the magnetism arising from the 

quantization of orbital motion of charged particles in 

the presence of an external magnetic field which 

gives negative magnetic susceptibility and is 

governed by Curie’s law at high temperatures (now 

called Landau diamagnetism and explains the de 

Haas – van Alphen effect which refers to the 

oscillation of the magnetic moment of a metal with 

increase in the applied static magnetic flux density); 

unified description of the second – order phase 

transitions (which was improved after about 25 years 

in 1960s); phenomenological theory for the 

investigation of quantum Fermi liquids; the 

Ginzburg–Landau theory of superconductivity; 

Landau damping of longitudinal space charge waves 

in plasma; the Landau pole in quantum 

electrodynamics which is the basic idea behind the 

renormalization technique; the two-component 

theory of neutrinos; the Landau–Hopf theory of 

turbulence in fluid flow; the stellar theory; study of 

metals at low temperatures; absorption of sound in 

solids; x – ray scattering by crystals; the problems of 

parity conservation and nuclear structure. 

Landau’s works on density matrices, Landau 

diamagnetism and theory of second – order phase 

transitions were carried out at the age of 19, 22 and 

29 years, respectively. The first publication on the 

theory of He II appeared when he was just above 32. 
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15. Subrahmanyan Chandrasekhar (1910 – 

1995) 

India born American theoretical astrophysicist 

Chandrasekhar is remembered for his splendid 

contributions to the understanding developed through 

mathematical treatment of stellar structure, including 

the theory of white dwarf stars; stellar dynamics, 

together with the theory of stochastic processes and 

Brownian movement; the theory of radiative transfer, 

embracing the theory of stellar atmospheres; the 

quantum theory of the hydrogen anion; the theory of 

planetary atmospheres, including the theory of the 

illumination and the polarization of the sunlit sky; 

hydrodynamic and hydromagnetic stability, 

including the theory of the Rayleigh-Bénard 

convection; the stability of ellipsoidal figures of 

equilibrium; the general theory of relativity and 

relativistic astrophysics; the black holes and collision 

of gravitational waves. He also worked on problems 

in ballistics.  

His initial celebrated work in astrophysics pertains to 

statistical mechanical study of the relativistic 

degenerate electron gas in a white dwarf showing that 

such a star explodes to become a very bright star 

known as supernova if its mass exceeds 1.44 times 

the mass of the sun (the so called Chandrasekhar 

limit). It is now established that the ultimate fate of a 

star is determined by its mass. Smaller stars become 

white dwarfs, while larger stars, after the supernova 

stage, end up as neutron stars or black holes.  

He followed a very interesting style of pursuing 

research: he would prepare himself for a particular 

area of his liking, carry out exhaustive investigations 

on problems in this for few years and then write a 

monograph summarizing the major concepts in the 

field before shifting to another field and repeat the 

pattern. 

 Chandrasekhar published his first research paper on 

the Compton Scattering and the New Statistics at the 

age of 19 years and this was soon followed by his 

famous work on the Chandrasekhar limit. His 

complete work on stellar structure, the white dwarf 

stars and the initial contributions to the field of stellar 

dynamics appeared before he was 32 years old. 

16. Richard Phillips Feynman (1918 – 1988) 

One of the extraordinarily ingenious researcher and 

passionate teacher Feynman was an American 

theoretical physicist who is venerated not only for his 

innovative researches on variety of problems but also 

for the lucidly presented three – volume ‘Lectures on 

Physics’ for the undergraduate students, numerous 

books on different topics at higher level, simplified 

and charismatic presentation of difficult concepts in 

his lectures and the persistent sense of wit. His 

inspirational adage was “some essentially new 

physical ideas are needed”.  

His landmark research works are creation of modern 

version of quantum electrodynamics, principle of 

least action based path integral approach to quantum 

mechanics, graphic representation scheme for the 

complicated mathematical expressions governing the 

behavior of interacting particles containing radically 

original ideas to look at space – time (the Feynman 

diagrams), elegant atomic theory of a Bose liquid at 

low temperatures, circulation theorem and its 

application to describe the quantized vortex motion 

in a Bose fluid (particularly in liquid He II), parton 

model in particle physics, theory of weak interactions 

developed with Murray Gell-Mann which modified 

the Fermi theory taking care of parity violation, 

quantum chromodynamics, the variational 

perturbation theory and quantum gravity. He also 

worked on the Wheeler – Feynman absorber theory 

of electrodynamics. Feynman has been rightfully 

credited as the originator of the field of quantum 

computing and for introducing the concept of 

nanotechnology.  

He was an active participant in the Manhattan project 

(where he and Bethe put forward the Bethe–Feynman 

formula for calculating the yield of a fission bomb) 

and the Rogers Commission that investigated the 

Space Shuttle Challenger disaster in 1986 (here, he 

played an important role to show that the failure 
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occurred due to malfunctioning of the O – ring at very 

low temperature).  

Feynman was 21 when he published his first one - 

page note on the scattering of cosmic rays by the stars 

of a galaxy and a paper of about 4 pages on the forces 

in molecules (this constitutes the well - known 

Hellmann–Feynman theorem). The Bethe – Feynman 

formula was developed at the age of about 25 and the 

development of both the path integral technique in 

quantum mechanics and the quantum 

electrodynamics was completed by the age of 30 

years.  

17. In Lieu of Epilogue 

Before closing the article, it may be mentioned that 

(i) the narrative could have been quite lengthy as 

numerous physicists who made marvelous 

contributions when they were in this age range have 

been left out, and (ii) the purpose of this write – up 

was to bring out the exceptional works done by the 

physicists when they were young adults and not at all 

to diminish the important role played by the people 

who made impressive contributions after crossing the 

age of 32 years. In fact, a good number of physicists 

have become immortal in the history of the subject 

because of their wonderful researches done in older 

age. For example, one of the greatest experimentalists 

Michael Faraday (1791 – 1867) introduced the 

concept of electric and magnetic fields and presented 

the laws of electromagnetic induction and of 

electrolysis when he was around 40 though he had 

demonstrated the principle of working of an electric 

motor at the age of 30. Similarly, Albert Abraham 

Michelson (1852 - 1931) was 35 years old when the 

famous Michelson – Morley experiment concluding 

the absence of any motion of the earth relative to the 

ether was carried out; of course, at the age of 30 he 

had determined reasonably precise value of the speed 

of light. Max Karl Ernst Ludwig Planck’s (1858 – 

1947) work introducing the concept of quantum in his 

theory of black body radiation and Erwin Rudolf 

Josef Alexander Schrödinger’s important 

publications on wave mechanics formalism of 

quantum mechanics also appeared when they were 

around 40.  

In addition, among the physicists included in this 

article, the number of theoretical physicists surpasses 

that of the experimentalists. The reason for this is that 

generally theoretical physics is pursued by the people 

with a philosophical mind who have zeal to speculate 

about the highest principles using their powerful 

intuition and mathematical prowess. This usually 

happens at the age of about 25 years when he has 

been well exposed to the existing ideas, theories and 

the mathematical techniques but his mind is agile 

enough to conceive and execute radical ideas 

overhauling the previous views. On the other hand, 

experimental work requires professional maturity, 

confidence and experience in designing new 

equipment for the planned work and expertise to 

execute it properly, which generally delays the 

contribution.  
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There are two mistakes in the article 02
published in Volume 34, Issue 1.

1. Page 3, equation (9) is to be read as

1
λ
=

1
2π

∫ dk
k2 + B0

=
1

2
√

B0
(1)

2. Page 7, equation (29) is to be modi-
fied as (the second term in the first equation)

E =
π2h̄2

2ma2 −
π2h̄4

m2a3V0
[1 + cos(Ka)] (2)

with J = π2h̄4

2m2a3V0
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