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EDITORIAL 

 

  

 As this issue of Physics Education reaches 
the readers, the Nobel prizes for the year 2018 had 
been announced. The physics prize is shared by 
Professors Arthur Ashkin, Gerard Mourou and 
Donna Strickland for their work in laser physics. 
This year's prize honours the scientists for their 
work on optical tweezers, which allows for optical 
tools to pick and manipulate atoms, small objects 
like bacteria and the like. It also honours the work 
on chirped pulse amplification that helps create 
highly intense laser radiation. 
  
 Apart from the science part of it, this years 
prizes have garnered attention for other reasons 
too. Professor Donna Strickland becomes the third 
woman to win the physics Nobel prize and the last 
time it happened was in the year 1963 when Maria 
Goeppert Mayer won the prize for her work on 
nuclear physics. Incidentally, adding to many first, 
Professor Ashkin became the oldest scientist at 96 
years of age to have been awarded the Nobel 
prize.  

 
 Finally contributions of women to physics 
is beginning to recognised. This should inspire 
many more women to consider physics research 
and teaching as a career option. It is interesting to 
note that Maria Mayer did not have a salaried 
position until four years before she got the Nobel 
prize. Strickland's biographical entry in 
Wikipedia, the widely read open encyclopedia, 
was rejected because apparently she was not 
notable enough to deserve a place in Wikipedia. 
Clearly, it was and even now is not always a level 
playing for women physicists. Hopefully, this 
year's Nobel prize will bring about some long 
overdue changes for the women physicists. 
 

 
M. S. Santhanam 

Chief Editor 
Physics Education    

           
 

_______________________________________________________________________________________________   
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Abstract 

The aim of this compilation is to present all the 
Physics Nobel prizes to the curious readers in 
a tabular form (easy to read and find) who are 
not only interested to know about the Nobel 
Laureates but also about the growth of physics 
concepts with time which have attracted the 
awards.  
 
Keywords: Alfred Nobel, Nobel Prize, Physics 
 
The Nobel Prize in Physics is a yearly award 
given by the Royal Swedish Academy of 
Sciences for those who conferred the most 
outstanding contributions for mankind in the field 
of physics [1]. It is one of the five Nobel Prizes 
established by the will of Alfred Nobel in 1895 
and awarded since 1901; the others being the 
Nobel Prize in Chemistry, Nobel Prize in 
Literature, Nobel Peace Prize, and Nobel Prize in 
Physiology or Medicine. The first Nobel Prize in 
Physics was awarded to physicist Wilhelm 
Röntgen in recognition of the extraordinary 
services he has rendered by the discovery of the 
remarkable rays (or x-rays). This award is 
administered by the Nobel Foundation and widely 
regarded as the most prestigious award that a 
scientist can receive in physics. It is presented in 
Stockholm at an annual ceremony on 10 
December, the anniversary of Nobel's death. 
Through 2017, a total of 111 Physics Nobel 
Prizes have been awarded to a total of 207  

 
Physics Nobel Laureates (as John Bardeen has 
been awarded twice there are 206 individuals 
who have been awarded the Nobel Prize in 
Physics since 1901) and only two women have 
won the Nobel Prize in Physics: Marie Curie in 
1903, and Maria Goeppert Mayer in 1963.   

 
There is no other prize in the intellectual realm 
with the prestige of the Nobel Prizes. They also 
have a visibility that can hardly be compared to 
any other. In an age of science and technology in 
which we are gradually losing whole sets of 
values, fundamentally humanistic ones, the Nobel 
Prizes are one of our last bastions. We seek in 
them a reference, not only of excellence, but of 
honesty, enthusiasm, commitment to ideals, that 
inspires both laymen and professionals. Many of 
the winners were recognized among his peers as 
unique individuals, long before they were 
awarded the Prize. And afterwards they have 
continued to behave like people with great human 
qualities. That is why knowing about them 
(Nobel Laureates) and their contribution 
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(awarded discoveries) towards science and 
technology can be a tremendous inspiration and 
example for the young students from all over the 
world. Of all the Nobel Prizes have a more 
fundamental character and there is a degree of 
truth associated with them and they all help to 
build what we might call the “Great Humanity”. 
Their findings not only generate progress and 
allow society to develop, but also help us to know 
ourselves. Detailed knowledge about the laws and 
mechanisms governing Nature may have no 
immediate application, but make us aware of our 
own place in the Universe, help us to be more 
modest, more aware of our environment.  
The aim of this compilation is to present all the 
Physics Nobel prizes to the curious readers in a 
tabular form (easy to read and find) who are not 
only interested to know about the Nobel 
Laureates but also about the growth of physics 
concepts with time which have attracted the 
awards.  
 
Some most interesting facts about Nobel 
Prizes: 
 In the statutes of the Nobel Foundation it 

says: "If none of the works under 
consideration is found to be of the importance 
indicated in the first paragraph, the prize 
money shall be reserved until the following 
year. If, even then, the prize cannot be 
awarded, the amount shall be added to the 
Foundation's restricted funds."  

 Posthumous nominations can't be made for 
Nobel Prizes. If during consideration, the 
nominee dies, his name is removed. But if a 
person dies after being announced as the 
winner, a posthumous award is given.  

 More than three people can't share a Nobel 
Prize. 

 The Curies (Marie and Pierre Curie) 
comprised a very successful 'Nobel Prize 
family'. Marie Curie herself was awarded two 
Nobel Prizes - In 1903, she along with Pierre 
Curie (husband) was awarded half the Nobel 
Prize in Physics. In 1911 she was awarded the 
Nobel Prize in Chemistry. One of Marie and 
Pierre Curie's daughters, Irène Joliot-Curie, 
was awarded the Nobel Prize in Chemistry in 
1935 together with her husband Frédéric 
Joliot.) 

 To date, the youngest Nobel Laureate in 
Physics is Lawrence Bragg, who was 25 years 
old when he was awarded the Nobel Prize 
together with his father in 1915. 

 The average age of Nobel laureates, across all 
prize categories, is 59. But the oldest 
prizewinner was 90-year-old Leonid Hurwicz, 
who won the Economics Nobel (technically 
called the Sveriges Riksbank Prize in 
Economics Sciences in Memory of Alfred 
Nobel) in 2007. The youngest winner is 
Malala Yousafzai. She won the Peace Prize in 
2014 when she was 17 years old. 

 There is often a substantial delay between 
when a scientist makes a Nobel-worthy 
discovery and receiving the award—the 
average time varies from 20 to 30 years, 
depending on the award category. Sometimes 
the wait is even longer 

 Father & son awarded the Nobel Prize in 
Physics: 
William Bragg and Lawrence Bragg, 1915 
J. J. Thomson, 1906 and George Paget 
Thomson, 1937 
Niels Bohr, 1922 and Aage N. Bohr, 1975 
Manne Siegbahn, 1924 and Kai M. Siegbahn, 
1981
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Sr.No. Year of 
Prize 

Prize winners Discovery 

1.  2017 Rainer Weiss, Barry C. 
Barish and Kip S. Thorne 

"for decisive contributions to the LIGO detector and 
the observation of gravitational waves" 

2.  2016 David J. Thouless, F. Duncan M. 
Haldane and J. Michael Kosterlitz 

"for theoretical discoveries of topological phase 
transitions and topological phases of matter" 

3.  2015 Takaaki Kajita and Arthur B. 
McDonald 

"for the discovery of neutrino oscillations, which 
shows that neutrinos have mass" 

4.  2014 Isamu Akasaki, Hiroshi 
Amano and Shuji Nakamura 

"for the invention of efficient blue light-emitting 
diodes which has enabled bright and energy-saving 
white light sources" 

5.  2013 François Englert and Peter W. Higgs 
 

"for the theoretical discovery of a mechanism that 
contributes to our understanding of the origin of 
mass of subatomic particles, and which recently was 
confirmed through the discovery of the predicted 
fundamental particle, by the ATLAS and CMS 
experiments at CERN's Large Hadron Collider" 

6.  2012 Serge Haroche and David J. 
Wineland 
 

"for ground-breaking experimental methods that 
enable measuring and manipulation of individual 
quantum systems" 

7.  2011 Saul Perlmutter, Brian P. 
Schmidt and Adam G. Riess 

"for the discovery of the accelerating expansion of 
the Universe through observations of distant 
supernovae" 

8.  2010 Andre Geim and Konstantin 
Novoselov 

"for groundbreaking experiments regarding the two-
dimensional material graphene" 

Charles Kuen Kao 
 

"for groundbreaking achievements concerning the 
transmission of light in fibers for optical 
communication" 

Willard S. Boyle and George E. 
Smith 

"for the invention of an imaging semiconductor 
circuit - the CCD sensor" 

Yoichiro Nambu 
 

"for the discovery of the mechanism of spontaneous 
broken symmetry in subatomic physics" 

Makoto Kobayashi and Toshihide 
Maskawa 

"for the discovery of the origin of the broken 
symmetry which predicts the existence of at least 
three families of quarks in nature" 

11.  2007 Albert Fert and Peter Grünberg "for the discovery of Giant Magnetoresistance" 
12.  2006 John C. Mather and George F. Smoot 

 
"for their discovery of the blackbody form and 
anisotropy of the cosmic microwave background 
radiation" 

Roy J. Glauber "for his contribution to the quantum theory of optical 
coherence" 

John L. Hall and Theodor W. Hänsch 
 

"for their contributions to the development of laser-
based precision spectroscopy, including the optical 
frequency comb technique" 

14.  2004 David J. Gross, H. David 
Politzer and Frank Wilczek 

"for the discovery of asymptotic freedom in the 
theory of the strong interaction" 

15.  2003 Alexei A. Abrikosov, Vitaly L. 
Ginzburg and Anthony J. Leggett 

"for pioneering contributions to the theory of 
superconductors and superfluids" 

Raymond Davis Jr. and Masatoshi 
Koshiba 

"for pioneering contributions to astrophysics, in 
particular for the detection of cosmic neutrinos" 

Riccardo Giacconi 
 

"for pioneering contributions to astrophysics, which 
have led to the discovery of cosmic X-ray sources" 

17.  2001 Eric A. Cornell, Wolfgang 
Ketterle and Carl E. Wieman 

"for the achievement of Bose-Einstein condensation 
in dilute gases of alkali atoms, and for early 
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fundamental studies of the properties of the 
condensates" 

Zhores I. Alferov and Herbert 
Kroemer 

"for basic work on information and communication 
technology" 

Jack S. Kilby "for his part in the invention of the integrated 
circuit" 

19.  1999 Gerardus 't Hooft and Martinus J.G. 
Veltman 

"for elucidating the quantum structure of 
electroweak interactions in physics” 

20.  1998 Robert B. Laughlin, Horst L. 
Störmer and Daniel C. Tsui 

"for their discovery of a new form of quantum fluid 
with fractionally charged excitations" 

21.  1997 Steven Chu, Claude Cohen-
Tannoudji and William D. Phillips 

"for development of methods to cool and trap atoms 
with laser light" 

22.  1996 David M. Lee, Douglas D. 
Osheroff and Robert C. Richardson 

"for their discovery of superfluidity in helium-3" 

Martin L. Perl "for the discovery of the tau lepton" 
Frederick Reines "for the detection of the neutrino" 
Bertram N. Brockhouse "for the development of neutron spectroscopy" 
Clifford G. Shull "for the development of the neutron diffraction 

technique" 
25.  1993 Russell A. Hulse and Joseph H. 

Taylor Jr. 
 

"for the discovery of a new type of pulsar, a 
discovery that has opened up new possibilities for 
the study of gravitation" 

26.  1992 Georges Charpak 
 

"for his invention and development of particle 
detectors, in particular the multiwire proportional 
chamber" 

27.  1991 Pierre-Gilles de Gennes 
 

"for discovering that methods developed for 
studying order phenomena in simple systems can be 
generalized to more complex forms of matter, in 
particular to liquid crystals and polymers" 

28.  1990 Jerome I. Friedman, Henry W. 
Kendall and Richard E. Taylor 
 

"for their pioneering investigations concerning deep 
inelastic scattering of electrons on protons and 
bound neutrons, which have been of essential 
importance for the development of the quark model 
in particle physics" 

Norman F. Ramsey 
 

"for the invention of the separated oscillatory fields 
method and its use in the hydrogen maser and other 
atomic clocks" 

Hans G. Dehmelt and Wolfgang Paul "for the development of the ion trap technique" 
30.  1988 Leon M. Lederman, Melvin 

Schwartz and Jack Steinberger 
"for the neutrino beam method and the 
demonstration of the doublet structure of the leptons 
through the discovery of the muon neutrino" 

31.  1987 J. Georg Bednorz and K. Alexander 
Müller 

"for their important break-through in the discovery 
of superconductivity in ceramic materials" 

Ernst Ruska 
 

"for his fundamental work in electron optics, and for 
the design of the first electron microscope" 

Gerd Binnig and Heinrich Rohrer "for their design of the scanning tunneling 
microscope" 

33.  1985 Klaus von Klitzing "for the discovery of the quantized Hall effect" 
34.  1984 Carlo Rubbia and Simon van der 

Meer 
 

"for their decisive contributions to the large project, 
which led to the discovery of the field particles W 
and Z, communicators of weak interaction" 

Subramanyan Chandrasekhar 
 

"for his theoretical studies of the physical processes 
of importance to the structure and evolution of the 
stars" 
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William Alfred Fowler 
 

"for his theoretical and experimental studies of the 
nuclear reactions of importance in the formation of 
the chemical elements in the universe" 

36.  1982 Kenneth G. Wilson "for his theory for critical phenomena in connection 
with phase transitions" 

Nicolaas Bloembergen and Arthur 
Leonard Schawlow 

"for their contribution to the development of laser 
spectroscopy" 

Kai M. Siegbahn 
 

"for his contribution to the development of high-
resolution electron spectroscopy" 

38.  1980 James Watson Cronin and Val 
Logsdon Fitch 
 

"for the discovery of violations of fundamental 
symmetry principles in the decay of neutral K-
mesons" 

39.  1979 Sheldon Lee Glashow, Abdus 
Salam and Steven Weinberg 
 

"for their contributions to the theory of the unified 
weak and electromagnetic interaction between 
elementary particles, including, inter alia, the 
prediction of the weak neutral current" 

Pyotr Leonidovich Kapitsa "for his basic inventions and discoveries in the area 
of low-temperature physics" 

Arno Allan Penzias and Robert 
Woodrow Wilson 

"for their discovery of cosmic microwave 
background radiation" 

41.  1977 Philip Warren Anderson, Sir Nevill 
Francis Mott and John Hasbrouck 
van Vleck 

"for their fundamental theoretical investigations of 
the electronic structure of magnetic and disordered 
systems" 

42.  1976 Burton Richter and Samuel Chao 
Chung Ting 

"for their pioneering work in the discovery of a 
heavy elementary particle of a new kind" 

43.  1975 Aage Niels Bohr, Ben Roy 
Mottelson and Leo James Rainwater 
 

"for the discovery of the connection between 
collective motion and particle motion in atomic 
nuclei and the development of the theory of the 
structure of the atomic nucleus based on this 
connection" 

44.  1974 Sir Martin Ryle and Antony Hewish 
 

"for their pioneering research in radio astrophysics: 
Ryle for his observations and inventions, in 
particular of the aperture synthesis technique, and 
Hewish for his decisive role in the discovery of 
pulsars" 

Leo Esaki and Ivar Giaever 
 

"for their experimental discoveries regarding 
tunneling phenomena in semiconductors and 
superconductors, respectively" 

Brian David Josephson 
 

"for his theoretical predictions of the properties of a 
supercurrent through a tunnel barrier, in particular 
those phenomena which are generally known as the 
Josephson effects" 

46.  1972 John Bardeen, Leon Neil 
Cooper and John Robert Schrieffer 

"for their jointly developed theory of 
superconductivity, usually called the BCS-theory" 

47.  1971 Dennis Gabor "for his invention and development of the 
holographic method" 

Hannes Olof Gösta Alfvén 
 

"for fundamental work and discoveries in 
magnetohydro-dynamics with fruitful applications in 
different parts of plasma physics" 

Louis Eugène Félix Néel 
 

"for fundamental work and discoveries concerning 
antiferromagnetism and ferrimagnetism which have 
led to important applications in solid state physics" 

49.  1969 Murray Gell-Mann 
 

"for his contributions and discoveries concerning the 
classification of elementary particles and their 
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interactions" 
50.  1968 Luis Walter Alvarez 

 
"for his decisive contributions to elementary particle 
physics, in particular the discovery of a large 
number of resonance states, made possible through 
his development of the technique of using hydrogen 
bubble chamber and data analysis" 

51.  1967 Hans Albrecht Bethe 
 

"for his contributions to the theory of nuclear 
reactions, especially his discoveries concerning the 
energy production in stars" 

52.  1966 Alfred Kastler 
 

"for the discovery and development of optical 
methods for studying Hertzian resonances in atoms" 

53.  1965 Sin-Itiro Tomonaga, Julian 
Schwinger and Richard P. Feynman 

"for their fundamental work in quantum 
electrodynamics, with deep-ploughing consequences 
for the physics of elementary particles" 

54.  1964 Charles Hard Townes, Nicolay 
Gennadiyevich Basov and Aleksandr 
Mikhailovich Prokhorov 

"for fundamental work in the field of quantum 
electronics, which has led to the construction of 
oscillators and amplifiers based on the maser-laser 
principle" 

Eugene Paul Wigner 
 

"for his contributions to the theory of the atomic 
nucleus and the elementary particles, particularly 
through the discovery and application of 
fundamental symmetry principles" 

Maria Goeppert Mayer and J. Hans 
D. Jensen 

"for their discoveries concerning nuclear shell 
structure" 

56.  1962 Lev Davidovich Landau "for his pioneering theories for condensed matter, 
especially liquid helium" 

Robert Hofstadter 
 

"for his pioneering studies of electron scattering in 
atomic nuclei and for his thereby achieved 
discoveries concerning the structure of the nucleons" 

Rudolf Ludwig Mössbauer 
 

"for his researches concerning the resonance 
absorption of gamma radiation and his discovery in 
this connection of the effect which bears his name" 

58.  1960 Donald Arthur Glaser "for the invention of the bubble chamber" 
59.  1959 Emilio Gino Segrè and Owen 

Chamberlain 
"for their discovery of the antiproton" 

60.  1958 Pavel Alekseyevich Cherenkov, Il´ja 
Mikhailovich Frank and Igor 
Yevgenyevich Tamm 

"for the discovery and the interpretation of the 
Cherenkov effect" 
 

61.  1957 Chen Ning Yang and Tsung-Dao 
(T.D.) Lee 
 

"for their penetrating investigation of the so-called 
parity laws which has led to important discoveries 
regarding the elementary particles" 

62.  1956 William Bradford Shockley, John 
Bardeen and Walter Houser Brattain 

"for their researches on semiconductors and their 
discovery of the transistor effect" 

Willis Eugene Lamb "for his discoveries concerning the fine structure of 
the hydrogen spectrum" 

Polykarp Kusch "for his precision determination of the magnetic 
moment of the electron" 

Max Born 
 

"for his fundamental research in quantum 
mechanics, especially for his statistical interpretation 
of the wavefunction" 

Walther Bothe "for the coincidence method and his discoveries 
made therewith" 

65.  1953 Frits Zernike 
 

"for his demonstration of the phase contrast method, 
especially for his invention of the phase contrast 
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microscope" 
66.  1952 Felix Bloch and Edward Mills 

Purcell 
 

"for their development of new methods for nuclear 
magnetic precision measurements and discoveries in 
connection therewith" 

67.  1951 Sir John Douglas 
Cockcroft and Ernest Thomas Sinton 
Walton 

"for their pioneer work on the transmutation of 
atomic nuclei by artificially accelerated atomic 
particles" 

68.  1950 Cecil Frank Powell 
 

"for his development of the photographic method of 
studying nuclear processes and his discoveries 
regarding mesons made with this method" 

69.  1949 Hideki Yukawa 
 

"for his prediction of the existence of mesons on the 
basis of theoretical work on nuclear forces" 

70.  1948 Patrick Maynard Stuart Blackett 
 

"for his development of the Wilson cloud chamber 
method, and his discoveries therewith in the fields of 
nuclear physics and cosmic radiation" 

71.  1947 Sir Edward Victor Appleton 
 

"for his investigations of the physics of the upper 
atmosphere especially for the discovery of the so-
called Appleton layer" 

72.  1946 Percy Williams Bridgman 
 

"for the invention of an apparatus to produce 
extremely high pressures, and for the discoveries he 
made therewith in the field of high pressure physics" 

73.  1945 Wolfgang Pauli "for the discovery of the Exclusion Principle, also 
called the Pauli Principle" 

74.  1944 Isidor Isaac Rabi "for his resonance method for recording the 
magnetic properties of atomic nuclei" 

75.  1943 Otto Stern 
 

"for his contribution to the development of the 
molecular ray method and his discovery of the 
magnetic moment of the proton" 

76.  1939 Ernest Orlando Lawrence 
 

"for the invention and development of the cyclotron 
and for results obtained with it, especially with 
regard to artificial radioactive elements" 

77.  1938 Enrico Fermi 
 

"for his demonstrations of the existence of new 
radioactive elements produced by neutron 
irradiation, and for his related discovery of nuclear 
reactions brought about by slow neutrons" 

78.  1937 Clinton Joseph Davisson and George 
Paget Thomson 

"for their experimental discovery of the diffraction 
of electrons by crystals" 

Victor Franz Hess "for his discovery of cosmic radiation" 
Carl David Anderson "for his discovery of the positron" 

80.  1935 James Chadwick "for the discovery of the neutron" 
81.  1933 Erwin Schrödinger and Paul Adrien 

Maurice Dirac 
"for the discovery of new productive forms of 
atomic theory" 

82.  1932 Werner Karl Heisenberg 
 

"for the creation of quantum mechanics, the 
application of which has, inter alia, led to the 
discovery of the allotropic forms of hydrogen" 

83.  1930 Sir Chandrasekhara Venkata Raman 
 

"for his work on the scattering of light and for the 
discovery of the effect named after him" 

84.  1929 Prince Louis-Victor Pierre Raymond 
de Broglie 

"for his discovery of the wave nature of electrons" 

85.  1928 Owen Willans Richardson 
 

"for his work on the thermionic phenomenon and 
especially for the discovery of the law named after 
him" 

Arthur Holly Compton "for his discovery of the effect named after him" 
Charles Thomson Rees Wilson "for his method of making the paths of electrically 
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 charged particles visible by condensation of vapour" 
87.  1926 Jean Baptiste Perrin 

 
"for his work on the discontinuous structure of 
matter, and especially for his discovery of 
sedimentation equilibrium" 

88.  1925 James Franck and Gustav Ludwig 
Hertz 

"for their discovery of the laws governing the impact 
of an electron upon an atom" 

89.  1924 Karl Manne Georg Siegbahn "for his discoveries and research in the field of X-
ray spectroscopy" 

90.  1923 Robert Andrews Millikan 
 

"for his work on the elementary charge of electricity 
and on the photoelectric effect" 

91.  1922 Niels Henrik David Bohr 
 

"for his services in the investigation of the structure 
of atoms and of the radiation emanating from them" 

92.  1921 Albert Einstein 
 

"for his services to Theoretical Physics, and 
especially for his discovery of the law of the 
photoelectric effect" 

93.  1920 Charles Edouard Guillaume 
 

"in recognition of the service he has rendered to 
precision measurements in Physics by his discovery 
of anomalies in nickel steel alloys" 

94.  1919 Johannes Stark 
 

"for his discovery of the Doppler effect in canal rays 
and the splitting of spectral lines in electric fields" 

95.  1918 Max Karl Ernst Ludwig Planck 
 

"in recognition of the services he rendered to the 
advancement of Physics by his discovery of energy 
quanta" 

96.  1917 Charles Glover Barkla "for his discovery of the characteristic Röntgen 
radiation of the elements" 

97.  1915 Sir William Henry 
Bragg and William Lawrence Bragg 

"for their services in the analysis of crystal structure 
by means of X-rays" 

98.  1914 Max von Laue "for his discovery of the diffraction of X-rays by 
crystals" 

99.  1913 Heike Kamerlingh Onnes 
 

"for his investigations on the properties of matter at 
low temperatures which led, inter alia, to the 
production of liquid helium" 

100.  1912 Nils Gustaf Dalén 
 

"for his invention of automatic regulators for use in 
conjunction with gas accumulators for illuminating 
lighthouses and buoys" 

101.  1911 Wilhelm Wien "for his discoveries regarding the laws governing the 
radiation of heat" 

102.  1910 Johannes Diderik van der Waals "for his work on the equation of state for gases and 
liquids" 

103.  1909 Guglielmo Marconi and Karl 
Ferdinand Braun 

"in recognition of their contributions to the 
development of wireless telegraphy" 

104.  1908 Gabriel Lippmann 
 

"for his method of reproducing colours 
photographically based on the phenomenon of 
interference" 

105.  1907 Albert Abraham Michelson 
 

"for his optical precision instruments and the 
spectroscopic and metrological investigations 
carried out with their aid" 

106.  1906 Joseph John Thomson 
 

"in recognition of the great merits of his theoretical 
and experimental investigations on the conduction of 
electricity by gases" 

107.  1905 Philipp Eduard Anton von Lenard "for his work on cathode rays" 
108.  1904 Lord Rayleigh (John William Strutt) 

 
"for his investigations of the densities of the most 
important gases and for his discovery of argon in 
connection with these studies" 
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109.  1903 Antoine Henri Becquerel 
 

"in recognition of the extraordinary services he has 
rendered by his discovery of spontaneous 
radioactivity" 

Pierre Curie and Marie Curie, née 
Sklodowska 
 

"in recognition of the extraordinary services they 
have rendered by their joint researches on the 
radiation phenomena discovered by Professor Henri 
Becquerel" 

110.  1902 Hendrik Antoon Lorentz and Pieter 
Zeeman 
 

"in recognition of the extraordinary service they 
rendered by their researches into the influence of 
magnetism upon radiation phenomena" 

111.  1901 Wilhelm Conrad Röntgen 
 

"in recognition of the extraordinary services he has 
rendered by the discovery of the remarkable rays 
subsequently named after him" 

No Nobel Prize was awarded in 1916, 1931, 1934, 1940, 1941 and 1942. In 1916, 1940-42 it is quite reasonable to 
assume that there was no awarding due to the world wars. 
 
[1].  https://www.nobelprize.org/nobel_prizes/physics/laureates/ 
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Abstract

In this article, we describe a very simple tech-

nique to locate naked-eye planets in the sky, to

an accuracy of ∼ 1◦, up to say, 2050 AD. The

procedure, comprising just three steps, involves

very simple manual calculations for planetary or-

bits around the Sun; all one needs are the initial

specifications of planetary positions for some

standard epoch and the time periods of their

revolutions. After applying a small correction

for the orbital ellipticity, appearance of a planet

relative to Sun’s position in sky, as seen by an

observer from Earth, is found using a scale and a

protractor (found inside a school geometry box).

1 Introduction

Quite often, seeing a bright star-like object
in the evening sky (or in the morning sky
for the early birds!) many of us would have
wondered whether it is a planet and if so,
which one. To be able to actually locate a
planet in the sky is something that could
be thrilling to most of us and occasionally

it provides us an opportunity to impress
our friends and acquaintances. Although
daily planetary positions could be obtained
from the professional ephemeris [1] or sim-
ply from the internet, yet it is very instruc-
tive and much more satisfying to be able
to calculate these ourselves, starting from,
say, one of Kepler’s famous laws, which
states that planets go around Sun in ellipti-
cal paths.

The path that Earth takes in the sky is
called the ecliptic. The familiar Zodiac con-
stellations are just divisions of the ecliptic
into twelve parts. Sun as well as planets, as
seen from Earth, also appear to move along
the ecliptic and pass through the Zodiac
constellations. The angle along the ecliptic
is called longitude (denoted by λ), measured
eastwards, that is, anti-clockwise, from 0◦ to
360◦. Its origin, λ = 0◦, is known as the First
Point of Aries, the position Sun occupies on
the ecliptic around 21st of March every year.

The first step in our exercise would be
to calculate the longitude of a planet as well
as that of Earth around Sun. We initially
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consider the planets to revolve around Sun
in uniform circular motion. However, this
will entail a correction since the actual orbits
are elliptical where the angular speed is not
uniform. In second step we employ a pre-
computed table to find the necessary correc-
tions. From another table we also determine
distances of planets from Sun. In a third
and final step, we plot the distances along
the corrected longitudes of chosen planet as
well as that of Earth centred around Sun on
a graph sheet or a chart, using a scale and
a protractor (found inside a school geome-
try box) and measure the angle between the
planet and Sun as seen from Earth, which al-
lows us to locate the planet in the sky.

2 Step 1: Longitude in a circular

orbit

First we consider the planets to move
around Sun in circular orbits with uniform
angular speeds. We need longitudes of plan-
ets in their orbits around Sun on some initial
date. Here we take 1st January, 2000, 00:00
UT as our initial date [2] for which we have
listed the longitudes (λi) of the planets (Ta-
ble A1). Also listed in Table A1 is the pe-
riod T (days) of revolution of each planet [3].
From T we get the mean angular speed of
the planet as ω0 = 360/T (◦/day). We de-
note the Mean Longitude of the planets in
the imaginary circular orbit for subsequent
dates as λ0.

As an example, we calculate the mean
longitude λ0 for Venus on 1st October 2018.

The initial longitude of Venus (on
01.01.2000), λi = 181.2◦.

The mean angular speed of Venus, ω0 =

1.60213◦/day
No. of days between 01.01.2000 and

01.10.2018, N = 365 × 18 + 273 + 5 = 6848
(including 5 leap days).

The mean angle traversed duration this
period, ω0N = 1.60213 × 6848 = 10971.4◦.

So, on 01.10.18 the mean longitude of
Venus, λ0 = 181.2 + 10971.4 = 11152.6◦.

After taking out 30 complete orbits in
integer multiple of 360◦, we get mean lon-
gitude of Venus, λ0 = 11152.6 − 360 × 30 =

352.6◦.
As another example we also calculate

the mean longitude of Jupiter on 01.10.18,
λ0 = 34.3 + 0.08309 × 6848 = 603.3◦. After
taking out one complete cycle, the mean lon-
gitude of Jupiter on 01.10.18 is λ0 = 243.3◦.

We also need to calculate the mean lon-
gitude of Earth on 01.10.18 as λ0 = 100 +

0.98561 × 6848 = 6849.5◦. Or the mean lon-
gitude of Earth on 01.10.18 is λ0 = 9.5◦ (after
taking out 19 complete orbits).

3 Step 2: Correcting for the

elliptical motion

The orbits of planets around Sun are ellipti-
cal and as a result their angular speeds are
not exactly uniform. The corrections in the
longitudes of some of the planets due to this
variation in their angular speeds could be
substantial. To correct for the elliptical mo-
tion, here we employ Table A2, computed
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based on the formulation derived in [4]. En-
tries for each planet in Table A2 also ac-
count for the orientation of its elliptical or-
bit within the ecliptic plane, specified by the
longitude of the perihelion, where perihe-
lion is the point closest to the Sun on the el-
liptical orbit of the planet.

The correction from the Table A2 for
Venus for λ0 = 352.6 is −0.3◦. Therefore cor-
rected longitude is λ = 352.6− 0.3 = 352.3◦.

The correction for Jupiter for λ0 =

243.3◦ is −3.8◦, with corrected longitude
λ = 243.3 − 3.8 = 239.5◦.

Similarly we calculate the corrected el-
liptical longitude for Earth as λ = 7.8◦.

4 Step 3: Calculating the

elongation from Sun

The difference between the geocentric posi-
tion of a planet and Sun is called the elon-
gation (ψ) of the planet and it tells us about
planet’s position in the sky relative to that
of the Sun. As we want to find the sky po-
sition of a planet, as seen by an observer lo-
cated on Earth, we need to find the position
of Earth too in the ecliptic. Since Earth lon-
gitude changes by ∼ 1◦ per day, we need
Earth position for the same date and time as
that of the planet we are interested in.

We have already calculated the ecliptic
longitudes of Venus, Jupiter and Earth. For
each of these planets we also need to find
radii r, the distance from Sun, which is listed
against λ0 in Table A3 in AU (Astronomical
Unit - the mean distance between Earth and

Sun). For our chosen date of 01/10/2018, r
is 0.73 A.U. for Venus, 5.37 for Jupiter and
1.00 A.U. for Earth.

Although one could employ a calcula-
tor to compute geocentric longitude and the
elongation of the planet [4], however, a man-
ual geometric construction could be much
more illuminating. All one needs is a scale
and a protractor, usually found in a school
geometry box.

Now we plot on a graph sheet or a chart
paper the position of Venus at its respec-
tive distance 0.73 A.U. (on a suitable scale
chosen for 1 A.U.) along its corrected longi-
tude λ = 352.3◦ (increasing anti-clockwise)
around Sun. Similarly we also need to plot
the position of Earth on this diagram (see
Fig. 1).

To locate a planet in the sky we deter-
mine its elongation ψ which is the angular
distance measured eastward (that is, anti-
clockwise) from Sun‘s position on the eclip-
tic, as seen from Earth (Fig. 1).

This way, from the chart, we determine
the angle ψ between the line joining Earth
to the planet and that from Earth to Sun. If
ψ > 0 (measured anti-clockwise from Earth-
Sun line) then the planet position lies to the
east of Sun. That means that it will set after
the Sun and the planet will be visible above
the western horizon in the evening sky. On
the other hand, if ψ < 0, then the planet will
rise before the Sun and will be visible in the
morning sky above the eastern horizon.

From Fig. 1 we find that on 1/10/2018
Venus is ∼ 33◦ east of Sun, and it will be
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Figure 1: Elongation of Venus on 1-10-2018.

visible at sunset time about 33◦ away from
Sun’s position in the western sky.

From Fig. 2 we see that on 1/10/2018
Jupiter is ∼ 44◦ east of Sun, and it will
be therefore visible in the evening about
44◦ away from Sun’s position. Thus in
the evening of 1/10/2018, one will see two
bright objects (Venus and Jupiter) separated
about 11◦ in the western sky.

As Earth completes a full rotation about
its axis in 24 hours, the westward motion of
the sky is at a rate 360/24 = 15◦/ hour. This
is strictly true for the celestial equator, but
we can use this as an approximate rotation
rate even for the ecliptic, which is inclined
at a 23.5◦ to the equator. On 1/10/2018,
therefore, Venus with an eastern elongation
∼ 33◦, will set a little more than two hours
after sunset, while Jupiter at ∼ 44◦ will set
slightly less than three hours after sunset.

Elongations of other planets can be cal-
culated in the same way. In this way, one can
easily locate the planets in the sky by know-
ing their elongations with respect to the Sun.

We may add here that all our calcula-
tions so far have been for 00:00 hr UT (Uni-
versal time) which corresponds to 05:30 hr
IST (Indian Standard Time). However it
is possible to determine the planetary po-
sitions for any other time of the day. For
example for our cases of Venus and Jupiter,
which are visible in the evening hours on
our chosen date of 1/10/2018, it might be
preferable to take number of days in Step
1 as 6848.5, which would then imply that
our calculated positions will be for the same
date but for 12:00 UT, corresponding to 17:30
hr IST, locally an evening time.

In Table 1, we have listed the elonga-
tions of all five naked-eye planets on 01-10-
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Figure 2: Elongation of Jupiter on 1-10-2018.
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Table 1: Elongations of planets on 01.10.2018
at 00:00 hr and 12:00 hr UT

Planet
00:00 hr UT 12:00 hr UT
λ(◦) ψ(◦) λ(◦) ψ(◦)

Earth 7.8 8.3
Mercury 213.4 7.7 214.9 8.0
Venus 352.3 32.8 353.1 32.4
Mars 345.6 117.9 345.9 117.6
Jupiter 239.5 44.3 239.6 43.9
Saturn 278.9 85.4 278.9 84.9

2018 at 00:00 hr UT (5:30 IST) and at 12:00
hr UT (17:30 IST). It should be noted that
not only the longitude of each planet around
Sun might change by a certain amount, even
the longitude of Earth advances by ∼ 1◦ in
a day, thus affecting the elongation of even
Jupiter and Saturn (Table 1), whose angular
speeds are relatively small (Table A1).

5 CONCLUSIONS

We tried to dispel a general notion that to
be able to determine positions of planets in
the night sky one requires complex scientific
computations, using fast computers. The
motive of this article has been to impress
upon the reader that such accurate calcu-
lations are not really necessary for locating
naked-eye planets in sky. It was demon-
strated that in just three steps, one can find
the positions of planets manually with sim-
ple arithmetic calculations. All one needs
are the initial specifications of planetary po-
sitions for some standard epoch and the

time periods of their revolutions. Then after
applying a small correction for the orbital el-
lipticity, the location of a planet in sky, from
the point of view of an Earth-based observer,
could be found and thus one could get the
thrill of locating a planet at the predicted po-
sition in the night sky.
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Appendix

Table A1: Parameters of the planetary orbits
on 01.01.2000, 00:00 UT

Planet λi (◦) T (days) ω0 (◦/day)
Mercury 250.2 87.969 4.09235
Venus 181.2 224.701 1.60213
Earth 100.0 365.256 0.98561
Mars 355.2 686.980 0.52403
Jupiter 34.3 4332.59 0.08309
Saturn 50.1 10759.2 0.03346
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Table A2: Correction to the longitude for elliptical orbits
λ0 Mercury Venus Earth Mars Jupiter Saturn

0 -24.1 -0.4 -1.7 5.0 -1.3 -6.1
10 -23.7 -0.5 -1.7 6.7 -0.2 -6.2
20 -22.4 -0.5 -1.7 8.2 0.8 -6.0
30 -20.2 -0.6 -1.6 9.4 1.8 -5.6
40 -17.1 -0.6 -1.5 10.3 2.7 -5.1
50 -13.2 -0.6 -1.3 10.8 3.6 -4.4
60 -8.6 -0.5 -1.1 11.0 4.3 -3.5
70 -3.7 -0.5 -0.9 10.8 4.9 -2.5
80 1.5 -0.4 -0.6 10.3 5.4 -1.3
90 6.6 -0.3 -0.2 9.5 5.7 -0.2

100 11.4 -0.2 0.1 8.5 5.8 1.0
110 15.6 -0.1 0.4 7.3 5.7 2.2
120 19.1 0.0 0.8 5.9 5.5 3.3
130 21.8 0.2 1.1 4.4 5.1 4.2
140 23.6 0.3 1.4 2.8 4.6 5.1
150 24.4 0.4 1.6 1.2 3.9 5.7
160 24.3 0.6 1.8 -0.4 3.2 6.2
170 23.5 0.7 2.0 -2.1 2.4 6.5
180 21.9 0.8 2.1 -3.7 1.5 6.6
190 19.8 0.9 2.1 -5.2 0.6 6.5
200 17.3 0.9 2.1 -6.6 -0.3 6.2
210 14.6 1.0 2.0 -7.9 -1.2 5.7
220 11.6 1.0 1.9 -8.9 -2.1 5.1
230 8.6 1.0 1.7 -9.8 -2.9 4.3
240 5.5 0.9 1.5 -10.3 -3.6 3.5
250 2.5 0.9 1.2 -10.6 -4.2 2.5
260 -0.6 0.8 0.9 -10.5 -4.7 1.5
270 -3.6 0.7 0.6 -10.0 -5.1 0.5
280 -6.7 0.6 0.3 -9.3 -5.3 -0.5
290 -9.7 0.5 -0.0 -8.1 -5.4 -1.5
300 -12.7 0.4 -0.4 -6.7 -5.2 -2.5
310 -15.6 0.2 -0.7 -5.0 -4.9 -3.4
320 -18.2 0.1 -0.9 -3.1 -4.5 -4.2
330 -20.5 -0.0 -1.2 -1.1 -3.8 -4.9
340 -22.4 -0.2 -1.4 1.0 -3.1 -5.5
350 -23.6 -0.3 -1.5 3.1 -2.2 -5.9
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Table A3: Planetary distances (in AU) corresponding to λ0 values
λ0 Mercury Venus Earth Mars Jupiter Saturn

0 0.39 0.73 1.00 1.39 4.96 9.61
10 0.37 0.73 1.00 1.41 4.95 9.52
20 0.36 0.72 1.00 1.42 4.95 9.42
30 0.34 0.72 1.00 1.45 4.96 9.33
40 0.33 0.72 0.99 1.47 4.98 9.25
50 0.32 0.72 0.99 1.49 5.00 9.18
60 0.31 0.72 0.99 1.52 5.03 9.12
70 0.31 0.72 0.99 1.54 5.07 9.07
80 0.31 0.72 0.98 1.57 5.11 9.04
90 0.31 0.72 0.98 1.59 5.15 9.02

100 0.32 0.72 0.98 1.61 5.19 9.02
110 0.33 0.72 0.98 1.62 5.24 9.05
120 0.34 0.72 0.98 1.64 5.28 9.08
130 0.35 0.72 0.99 1.65 5.32 9.14
140 0.37 0.72 0.99 1.66 5.35 9.20
150 0.38 0.72 0.99 1.66 5.39 9.28
160 0.39 0.72 0.99 1.66 5.41 9.37
170 0.41 0.72 0.99 1.66 5.43 9.46
180 0.42 0.72 1.00 1.65 5.45 9.55
190 0.43 0.72 1.00 1.64 5.45 9.64
200 0.44 0.72 1.00 1.63 5.45 9.73
210 0.45 0.72 1.01 1.61 5.44 9.81
220 0.45 0.72 1.01 1.59 5.43 9.89
230 0.46 0.72 1.01 1.57 5.41 9.95
240 0.46 0.72 1.01 1.55 5.38 10.00
250 0.47 0.73 1.01 1.52 5.35 10.04
260 0.47 0.73 1.02 1.50 5.31 10.07
270 0.47 0.73 1.02 1.47 5.27 10.08
280 0.46 0.73 1.02 1.45 5.23 10.08
290 0.46 0.73 1.02 1.43 5.19 10.06
300 0.45 0.73 1.02 1.41 5.14 10.03
310 0.44 0.73 1.01 1.40 5.10 9.98
320 0.43 0.73 1.01 1.38 5.06 9.93
330 0.42 0.73 1.01 1.38 5.03 9.86
340 0.41 0.73 1.01 1.38 5.00 9.78
350 0.40 0.73 1.01 1.38 4.97 9.70
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Abstract

Equation of state for a polarized system is

obtained using canonical ensemble. Energy

of the system based on mean field treatment

is used for the purpose [1]. The equation of

state obtained matches with the van der Waals

equation of state.

1 Introduction

In the limit of very low number density, all
gases follow the law PV = NkT where P is
the pressure, V the volume, k Boltzmann’s
constant, T the thermodynamic tempera-
ture, and N the number of particles respec-
tively. A gas whose behavior is governed by
this equation of state over the whole range
of temperatures and pressures is called an
ideal gas. This equation of state can be theo-
retically obtained using the ensemble theory
of statistical thermodynamics when there
are no intermolecular forces [2, 3, 4, 5, 6, 7, 8].

At higher pressures and densities, however
the equation of state of a real gas starts to de-
viate from ideal gas behavior because of in-
termolecular forces and interactions. Then
the effect of interaction potential modifies
the pressure and then deviate from the ideal
gas nature. The net effect can be attractive
or repulsive which decreases or increases
the pressure and the equation of state be-
comes a virial series P

nkT = 1 + a2(T)n +

a3(T)n2 + ....., where al factors are known as
virial coefficients [2, 3, 4, 5, 6, 7] and n is the
number density. The van der Waals model
[9, 10] is the first known example of an in-
teracting system which shows phase tran-
sition, and the equation of state can be ob-
tained by using different types of interac-
tion potentials also using mean field approx-
imation. van der Waals theory gives proof
for the real existence of molecules and in-
teractions and his work started with the ef-
forts to determine the quantity which plays
a peculiar role in Laplace theory of capillar-
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ity, molecular pressure and surface tension
[9, 10, 11]. His firm faith in the molecular re-
ality can be seen from his Nobel lecture “that
in all my studies I was quite convinced of
the real existence of molecules, that I never
regarded them as a figment of my imagina-
tion, nor even as mere centers of force ef-
fects. I considered them to be the actual
bodies” [11]. About the interactions van der
Waals opinion was “it was necessary to de-
termine it by means of theoretical consider-
ations” [11]. Generally the van der Waals in-
teraction involve an attractive and a repul-
sive forces between the molecules of same
kind other than the bond formation. This
force may be dipole dipole, dipole induced
dipole, induced dipole induced dipole inter-
actions. Here we use a dipolar system of
particles and use the canonical ensemble for-
malism to find the equation of state.

2 Methodology

In order to get the equation of state of real
gases, different potential models were used
in different ensembles and more accurate
methods like cluster expansion technique
also is developed [2, 3]. The Gibb’s para-
dox and extensive property of a system like
entropy were studied with various external
potentials from a pedagogical point of view
[12]. For non ideal systems the calculation
of configuration partition function which in-
cludes the position dependence is difficult to
calculate with given potential in the canoni-
cal ensemble. So the method like cluster ex-

pansion was introduced by Mayer [2]. The
values of the virial coefficients are calculated
with the use of cluster integrals. Here we
used the mean field approach to a polar sys-
tem [1] and used the effective single particle
potential energy. Then by using the canon-
ical formalism the thermodynamic proper-
ties are found out.

3 Potential energy for dipolar

system

Consider a system of identical molecules on
a lattice with permanent electric dipole mo-
ment in the absence of any external field.
The electric field due to the first dipole is
given by

~E1 =
1

4πε0

3( ˆr12.~p1) ˆr12 − ~p1

r3
12

(1)

In the presence of another dipole at a dis-
tance r12 with dipole moment ~p2, the inter-
action energy is given by E12 = −~p2.~E1

E12 =
−1

4πε0

3( ˆr12.~p1)( ˆr12.~p2)− ~p1.~p2

r3
12

(2)

The potential energy (ε1) of the molecule 1
interacting with all other molecules in the
system can be calculated using the mean
field approximation by taking average over
the orientations of molecule ~pj by the aver-
age 〈~p〉, then

ε1 = −~p1. ∑
j

3( ˆr1j. 〈~p〉) ˆr1j − 〈~p〉
4πε0r3

1j
(3)

ε1 = −~p1.~El (4)
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where ~El is the local field given by

~El = ∑
j

3( ˆr1j. 〈~p〉) ˆr1j − 〈~p〉
4πε0r3

1j
=

a
4πε0

~Pe (5)

where a is dimensionless term coming from
the sample shape, ~Pe = n 〈~p〉 is the polariza-
tion, and n is the number density. Since all
the dipoles are of equal magnitude p

ε1 = −~p1.~El = −cnpPecosθ (6)

where c = a
4πε0n = α

n with α = a
4πε0

and
θ is the angle between ~p1 and ~Pe. This sin-
gle particle potential correctly predict the
torque acting on the molecule 1 due to all
other molecules, but this value over counts
the mean value by a factor of 2. Then the
suitable single particle potential is[1]

u1 = ε1 −
1
2
〈ε1〉 (7)

It can be shown that[1]

u1 = −c n p Pecosθ +
1
2

cP2
e (8)

This equation gives correct average energy
criteria as N 〈u1〉 = U with out taking the
criteria of over counting of pair potential.

4 Equation of state using

Canonical Ensemble

The single particle energy which is the sum
of kinetic and potential energies for the po-
lar system is given by

εi =
p2

i
2m
− cn pPe cosθ +

1
2

c P2
e (9)

where pi is the momentum. The single par-
ticle partition function is obtained using the
expression

Q1 = ∑
i

e−βεi

Substituting the expression for energy

Q1 =
V′

λ3

∫ 2π

0
dφ
∫ π

0
sinθdθe−β(cn pPe cosθ+ 1

2 c P2
e )

(10)

where V′ is the effective volume given by
V′ = V − V0 with V0 representing the vol-
ume of the total molecules. The N particle
partition function is given by

QN =
1

N!
QN

1

The Helmholtz energy is given by

A = −kT ln QN (11)

Simplifying by taking c = a
4πε0n = αV

N we
get

A =
αP2

e V′

2

−NkT ln
4πV′

λ3N
−NkT ln

[
kT

αpPe
sinh

(
αpPe

kT

)]
(12)

The pressure is then obtained from

P = −
(

∂A
∂V′

)
T,N

(13)

we get

P =
NkT

V −V0
− αP2

e
2

(14)

which gives(
P +

αP2
e

2

)
(V −V0) = NkT (15)
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5 Discussions and Conclusions

The non ideal equation of state for a polar
system is found out using mean field ap-
proach and canonical ensemble formalism.
Due to the presence of permanent dipole
moment the equation state deviates from the
ideal equation of state. We get the equation
of state similar to the van der Waals equa-
tion of state if total polarization is taken to
be proportional to the number density.
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Abstract

In this paper, we have solved a rotational dy-

namics problem both in Inertial and Non-inertial

frames of reference.

The work presents a comparison of the analysis

in the two frames and comments on math-

ematical and physical concepts involved in

solving the problem. The results are then rep-

resented in terms of simulations and solutions

are thoroughly discussed, in an effort to give

students, a clear picture of the importance of

the two frames. The article is aimed at the

undergraduate level students.

1 Introduction

Problem-Solving is the key to understand-
ing Physics. There can be more than one
way to solve a given problem and often the
solutions arrived at by different approaches
may not have a prima facie agreement with
each other. This could lead to students
remaining confused and their gradual loss

of interest in problem-solving.
One of the initial steps involved in solving
any problem in mechanics is to choose an
appropriate frame of reference along with
a suitable coordinate system to work with.
Now, the frames of reference are broadly
classified on the basis of their accelera-
tion, viz, accelerated frame of reference
(Non-inertial) and non-accelerated frame of
reference (Inertial). Although these frames
are introduced in higher secondary Physics,
but their real analysis and comparison more
or less remains difficult to comprehend even
at undergraduate levels. Very frequently
the analysis of a problem in the two frames
is mixed up yielding erroneous results.
In this paper, a problem of rotational dy-
namics is designed and structured in such
a way that after handling it in both the
frames separately,the understanding of the
physical parameters w.r.t. both the frames is
enhanced.
Rigorous mathematics is involved while
analysing the problem in inertial frame
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using both the Cartesian and the Spherical
polar coordinates. However, it gives an
insight of the physical processes involved.
The trajectory of the bead so obtained is
illustrated to convey complete information
about its motion. Contrary to this, the
tedious mathematics involved in the inertial
frame can be bypassed and the solution
can be obtained in a much simpler manner
in the non-inertial frame. Again, the tra-
jectory in this frame is also illustrated and
discussed. A detailed comparison of the
analysis of the given problem in both the
frames is also done.

Problem Statement:
A bead of mass ’m’ slides without friction
on a rigid rod rotating at constant angular
speed ω , the rod being inclined at an angle
α with the axis of rotation, as shown in Fig-
ure 1. The problem is to find the trajectory
of the Bead and compare the results in both
the inertial and non-inertial frames.Assume
the bead to be initially at rest, at a distance
r0 from the pivoted end.

Figure 1:Bead sliding along a rotating rigid

rod. The angular velocity ~ω is along the
positive z axis, mg is the gravitational force
acting vertically downwards on the bead.

2 Non-Inertial Frame: A frame of

reference attached to the

rotating rod

Figure 2: Forces acting on the bead as
viewed by an observer in the Non- Inertial
Frame

Figure 2 shows the various forces act-
ing on the bead as viewed by an observer in
the Non- Inertial Frame. The rod is pivoted
at O. ~r(t) is the instantaneous position
vector of the bead along the rod w.r.t the
pivoted end and is directed away from
the pivot. The forces acting on the bead
are the normal contact forces N1 and N2

in two different planes perpendicular to
each other; the Coriolis force [-2m(~ω × ~̇r)]
acting perpendicular to the rod in a plane
perpendicular to the plane containing ~ω

and~r (the rod); the gravitational force, mg,
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acting vertically downwards; the centrifugal
force, m(r sin α)ω2 acting radially outwards
perpendicular to the axis of rotation.
At any instant, if ~ω and the rod are in the
plane of the paper, i.e., the YZ-plane, then
the Coriolis force acts perpendicular to
the rod along the X axis. It is balanced by
the normal force, N2 , from the rod on the
bead in the opposite (-X) direction. At this
instant, the component of the centrifugal
force, m(rsinα)ω2 cos α, the component of
gravitational force, mg sin α, both acting
on the bead perpendicular to the length of
the rod and the Normal contact force (N1)
experienced by the bead from the rod, all
lie in the plane of the paper (the YZ-plane).
Since the motion of the bead is along the
rod, as seen by the non-inertial observer,
there is no net force acting on the bead
perpendicular to the length of the rod. So,
we can write,

mg sin α = N1 + m(r sin α)ω2 cos α

At all instants of time, the bead experi-
ences no net force in any direction other
than the one along the rod.

If ~r(t) is the instantaneous position vector
of the bead along the rod with respect to the
pivoted end, then, by Newton’s second law,
the equation of motion of the bead is:

m d2~r
dt2 = (mω2r sin2 α + mg cos α)r̂

The first term on the RHS of equation
(2.2) is the component of centrifugal force

along the rod and second term is the gravi-
tational force component along the rod. The
corresponding scalar equation is:

r̈ = ω2r sin2 α + g cos α

This is a second order ,linear, non-
homogeneous differential equation that can
be solved by the method of undetermined
coefficients.

Solution of the differential equation:
The characteristic equation is:
Λ2 −ω2 sin2 α = 0
The roots are Λ1 = +ω sin α

and Λ2 = −ω sin α

Hence the solution of the homogeneous
part is

r = Aeω sin αt + Be−ω sin αt

where, A B are arbitrary constants.
For the particular solution, using method
of undetermined coefficient, let r(t)=c (con-
stant)
Substituting this in equation (2.2) We get,

0 = g cos α + cω2 sin2 α

c = − g cos α

ω2 sin2 α

The complete solution is therefore

r(t) = Aeω sin αt + Be−ω sin αt − g cos α

ω2 sin2 α

Using the initial conditions,
At t=0 , r = r0

r0 = A + B− γ where γ = g cos α

ω2 sin2 α

At t=0, ṙ = 0
A− B = 0
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Therefore, A = B = r0+γ
2

Substituting the above values we get,
r(t) = (ro + γ) cosh((ω sin α)t)− γ

This is the equation of trajectory of the bead
in the non- inertial frame. The non- inertial
observer sees the bead moving in a straight
line along the rod.
The Scilab plot[4] of equation (2.4) is shown
in figure 3.

Figure 3: Linear trajectory of the bead in the
Non- Inertial frame
From the above analysis of the problem in
the non-inertial frame of reference, we can
find the Normal contact forces acting on the
bead due to the rod as follow:

N1 = mg sin α−m(r sin α)ω2 cos α

N2 =| −2m(~ω×~̇r) |= 2mωṙ sin α

3 Inertial Frame:A frame of

reference with respect to which

the rod is rotating at an

angular velocity ~ω making an

angle α with the rod

3.1 Cartesian Coordinates

The Cartesian system of coordinates is most
often our default choice in problem solving
and we are, somehow, hardwired to use it.
The same is done here. Referring to Figure
4, ~r(t) is the instantaneous position vector
of the bead along the rod w.r.t the pivoted
end and directed away from the pivot. So,
the instantaneous cartesian coordinates of
the bead are:

x(t) = r(t) cos ωt sin α

y(t) = r(t) sin ωt sin α

z(t) = −r(t) cos α

Figure 4: Orientation of the rod in carte-
sian coordinates. ~r(t) is the instantaneous
position vector of the bead from the pivot
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O. r(t) sin α is the instantaneous radius
of curvature of the path of the bead.
r(t) sin α cos ωt and r(t) sin α sin ωt are the
instantaneous x(t) and y(t) coordinates of
the bead respectively.

Figure 5: Forces acting on the bead as
observed by an observer in the Inertial
frame.

Figure 5 shows the various forces acting on
the bead as observed in the inertial frame.
The bead experiences the gravitational
force, mg, acting vertically downwards and
the Normal contact forces N1 and N2 in two
different planes perpendicular to each other.
mg cos α and mg sin α are the components
of the gravitational force along the rod
and perpendicular to the rod respectively.

Figure 6: Acceleration experienced by
the bead observed by an observer in the
Inertial frame

Figure 6 shows the various components
of accelerations experienced by bead dur-
ing its motion.The bead experiences a
centripetal acceleration, r sin αω2, acting ra-
dially inwards towards the axis of rotation.
(r sin αω2) sin α and (r sin αω2) cos α are
the components of centripetal acceleration
experienced by the bead along the rod and
perpendicular to the rod respectively. r̈ is
the instantaneous acceleration of the bead
along the rod, directed away from the pivot.

The component of gravitational force,
mg cos α, experienced by the bead along
the rod is partly used to provide the nec-
essary centripetal acceleration component,
(r sin α)ω2 sin α, to the bead along the rod
and the remaining part of the gravitational
force component accelerates it down the rod
away from the pivot. Hence, the expression
for the acceleration of the bead along the
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rod is:

[r̈− (r sin α)ω2 sin α]r̂ = g cos αr̂

where, r̂ is the unit vector along ~r(t).
The corresponding scalar equation can be
written as:

r̈ = g cos α + ω2r sin2 α

The equation (3.3) is identical to equa-
tion (2.3).

So, substituting the expression for r(t)
obtained in equation (2.4) in equations (3.1),
we get the parametric equations of the
trajectory of the bead as observed in the
inertial frame. On plotting the equations
(3.1) alongwith equation (2.4) using Scilab
[4], the trajectory of the bead comes out to
be helical with a changing radius, as shown
in Figure 7.
Thus, we see that both the inertial and the
non-inertial observers agree on the values
of the acceleration experienced by the bead
along the length of the rod [Equations 3.3
and 2.3]. However, unlike the non-inertial
observer, the motion of the bead is not
linear. Since, the trajectory of the bead is
helical in the inertial frame of reference [Fig-
ure 7], the inertial observer sees additional
components of acceleration other than the
component of acceleration r̈, of the bead
along the rod.
To determine these components of accelera-
tion we need to write down the equations

of motion of the bead in directions normal
to the rod.
One of these equations is quite obvious, i.e.,

(mg sin α− N1) = m(r sin αω2 cos α)

Thus, we get the component of centripetal
acceleration [(r sin αω2) cos α] experienced
by the bead perpendicular to the length of
the rod.
The Normal force N2 acting on the bead
also accelerates it. This component of
acceleration can be obtained by dividing
the magnitude of the normal force N2 in
equation (2.5) with the mass of the bead.
This component of acceleration comes out
to be equal to 2ωṙ sin α. It is obtained
by dividing the magnitude of the normal
force in equation (2.5) with mass of the bead.

N2/m = 2ωṙ sin α

Figure 7: Helical trajectory of the bead as
observed in the Inertial frame. It has an
increasing radius as the bead slides along
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the rod away from the pivoted end.

3.2 Spherical Polar Coordinates

Alternatively, the motion of the bead, in
the inertial frame can be analysed using
Spherical polar coordinates which quite
simplifies the mathematics involved in the

analysis.

Figure 8: Orientation of the rod in Spherical
Polar Coordinates

Figure 8 shows the orientation of the
rod in Spherical polar coordinates. The
relation between the Spherical polar and
Cartesian coordinates is given by:

x(t) = r(t) sin θ cos φ

y(t) = r(t) sin θ sin φ

z(t) = r(t) cos θ

where, θ is the polar angle [0 ≤ θ ≤ π] and
φ is the azimuthal angle [0 ≤ φ ≤ 2π].

On mapping the spherical coordinates
with our problem, we have:

θ = π − α

φ(t) = ωt

Since α is a constant as the rod is in-
clined at a fixed angle, θ also does not
change with time. The rate of change of the
azimuthal angle φ is equal to the angular
speed of rotation of the rod, ω, and is also a
constant.

The expression for acceleration in spherical
polar coordinates is:

~̈r = (r̈− rω2 sin2 θ− rθ̇2)êr +(rω̇ sin θ +

2ṙω sin θ + 2rωθ̇ cos θ)êφ + (rθ̈ + 2ṙθ̇ −
rω2 sin θ cos θ)êθ

where, êr, êφ and êθ are the radial, az-
imuthal and polar unit vectors respectively.
On mapping with our ongoing analysis, êr

is identical to r̂.

So, the radial equation of motion is:

m[r̈− rω2 sin2 θ − rθ̇2] = mg cos α

Using equations (3.7) the above equa-
tion reduces to:

r̈ = g cos α + rω2 sin2 α 3.10

As expected, the equation (3.10) is identical
to equation (3.3) and (2.3).
On going back to equation (3.8), we see
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that it explicitly gives the other components
of acceleration experienced by the bead
in the inertial frame. We may refer to the
component of acceleration along êθ as the
”polar acceleration”, aθ, of the bead and
the component along êφ as the ”azimuthal
acceleration”, aφ, of the bead. These are
given by:

aφ êφ = 2ṙω sin θêφ

aθ êθ = −rω2 sin θ cos θêθ

(Since, θ̇ = 0 and ω̇ = ¨φ(t) = 0, using
θ = (π − α))
The scalar form of above equations can be
re-written as:

aφ = 2ṙω sin α

aθ = rω2 sin α cos α 3.12

The so termed ”polar acceleration” can
be identified with the component of cen-
tripetal acceleration experienced by the
bead normal to the rod. The ”azimuthal
acceleration” can be identified with the
acceleration experienced by the bead due to
the Normal contact force N2 acting on it [as
shown in the equation (3.5)].

Torque and Angular Momentum:

If ~L is the angular momentum of the
bead about the pivot, then we can write

~L =~r×m~̇r

Differentiating the above equation w.r.t.
time, we get the rate of change of angular
momentum of the bead as,

~̇L = ~̇r×m~̇r +~r×m~̈r

which reduces to

~̇L =~r×m~̈r

Using ~r = rêr and substituting for ~̈r
from equation 3.8, the expression for ~̇L
becomes,

~̇L = rêr × m[(r̈ − rω2 sin2 θ)êr +

(2ṙω sin θ)êφ − (rω2 sin θ cos θ)êθ]

~̇L = mr[2ṙω sin θ(êr × êφ) −
rω2 sin θ cos θ(êr × êθ)]

~̇L = mr[2ṙω sin θ(−êθ)− rω2 sin θ cos θ(êφ)]

Since θ = π − α,

~̇L = mr(−2ṙω sin αêθ + rω2 sin α cos αêφ)

If ~τ is the torque experienced by the
bead about the pivot, then,

~τ = ~̇L

Therefore,

~τ = r[−2mṙω sin αêθ + m(r sin α)ω2 cos αêφ]
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The negative sign in the first term shows
that this component of torque acts to de-
crease the angular momentum of the bead.
We re-write the above equation as

~τ = −τθ êθ + τφ êφ

, where,

τθ = r2mṙω sin α

τφ = rm(r sin α)ω2 cos α

The τφ component can be shown to be
equal to the resultant torque experienced
by the bead about the pivot due to the
gravitational force component, mg sin α,
and the normal contact force N1.
τφ = r(mg sin α− N1)

Substituting for N1 from equation (2.5)
in equation (3.20), we get

τφ = rm(r sin α)ω2 cos α

which is identical to its expression in
equation (3.19).

Similarly, the τθ component can be shown
to be equal to the torque experienced by
the bead about the pivot due to the Normal
contact force N2 acting on it.

τθ = rN2

Substituting for N2 from equation (2.5),
we get,

τθ = r2mṙω sin α

which is identical to its expression in
equation (3.19).

4 RESULTS AND DISCUSSIONS

Arriving at a detailed solution of the motion
of the bead, equations of trajectories are ob-
tained in both the frames.The non-inertial
observer sees the bead moving along the
rod, away from the pivot,i.e,the trajectory
of the bead is linear[Figure 3].On the other
hand, the inertial observer sees the rod ro-
tating, and the bead sliding along it away
from the pivot. The trajectory of the bead
in the inertial frame is helical with increas-
ing radius [Figure 7].
Both the observers agree on the accelera-
tion experienced by the bead along the rod
and rightly so. However,the inertial ob-
server also sees the bead accelerating in
other directions in addition to the one along
the rod. Having a closer look at equa-
tion (3.12), we see that aφ multiplied by the
mass of the bead corresponds to the Coriolis
force acting on the bead in the non-inertial
frame.Similarly, aθ multiplied by mass of the
bead corresponds to the component of cen-
trifugal force experienced by the bead nor-
mal to the rod in the non-inertial frame.
This illustrates an important concept:
”The only difference in writing equation of
motion in the two frames is that the acceler-
ation term in the inertial frame turns into a
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fictitious force term in the accelerating frame
and appears on the other side of the equa-
tion”.
It can be seen that the analysis of trajectory
of the bead in the inertial frame requires
quite an elaborate mathematical skill.The
mathematics is somewhat simplified when
we use spherical polar coordinates to ana-
lyze acceleration of the bead and other dy-
namical aspects of its motion like torque and
angular momentum in the inertial frame.
The advantage of tackling the problem in
the non-inertial frame lies in the ease of eval-
uating acceleration of the bead along the
length of the rod, in terms of the mathemat-
ical complexity. The determination of the
Normal Contact forces is also quite straight-
forward in the non-inertial frame.

5 Conclusion

The comparison of the analysis of the given
problem in both inertial and non-inertial
frames highlights the significance of both
frames with the pivotal elements of each in
focus. The choice of a reference frame could
be made on the basis of what aspect of the

problem is to be analyzed. The present work
attempts to reveal the advantage of using a
suitable coordinate system that makes use of
the symmetry (if any) of a given problem.
This goes a long way in easing out the math-
ematics needed to solve the problem.
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Abstract

It is shown that formulas for the radiative power

loss and radiation reaction from a charge can be

derived in a heuristic manner from the kinetic

power (rate of change of the kinetic energy)

of its electric inertial mass. The derivation

assumes a non-relativistic but otherwise an

arbitrary motion of the charge. We exploit

the fact that as the charge velocity changes

because of a constant acceleration, there are

accompanying modifications in its electromag-

netic fields which can remain concurrent with

the charge motion because the velocity as well

as acceleration information enters into the field

expression. However, if the acceleration of

the charge is varying, information about that

being not present in the field expressions, the

electromagnetic fields get “out of step” with

the actual charge motion. Accordingly we

arrive at a radiation reaction formula for an

arbitrarily moving charge, obtained hitherto in

literature from the self-force, derived in a rather

cumbersome way from the detailed mutual

interaction between various constituents of a

small charged sphere. This way we demonstrate

that a power loss from a charge occurs only

when there is a change in its acceleration and

the derived instantaneous power loss is directly

proportional to the scalar product of the velocity

and the rate of change of the acceleration of

the charge.

1 Introduction

Radiation reaction was proposed first by
Lorentz [1, 2] and later Abraham [3] and
Lorentz [4] derived it in detail for an arbi-
trarily moving small charged sphere, and is
now available in various forms in many text-
books [5, 6, 7, 8, 9, 10, 11]. The formula, hith-
erto obtained in literature in a rather cum-
bersome way, is evaluated from the detailed
mutual interaction between constituents of

34/3/5 1 www.physedu.in



Physics Education Jul- Sep 2018

the charged sphere. The self-force turns out
to be proportional to the rate of change of ac-
celeration, independent of the radius of the
small sphere. One obtains the instantaneous
radiative power loss formula by a scalar
product of the self-force with the velocity
of the charge. The same formula for the
radiative power loss is also obtained from
the Poynting flux in the neighbourhood of
a “point charge” in arbitrary motion [12].
Further, the radiation reaction formula has
been derived also from the rate of electro-
magnetic momentum flow, calculated using
the Maxwell stress tensor, across a surface
surrounding the neighbourhood of a point
charge, [13].

However this power loss formula does
not agree with the standard Larmor’s for-
mula, where one calculates the Poynt-
ing flux through a spherical surface of
large enough radius r centred on the time-
retarded position of the charge. The flux
turns out to be proportional to the square of
acceleration (∝ v̇2) [5, 6, 8].

There is extensive literature on this con-
troversy of which of these two formulas
gives correct description of radiative losses
[14, 15, 16, 17]. Larmor’s formula leads
to wrong conclusions in the instantaneous
rest-frame of an accelerated charge, where
the charge has no velocity and thus no ki-
netic energy to be lost into radiation. On
the other hand Larmor’s formula predicts
a continuous radiative loss proportional to
the square of acceleration even for an in-
stantly stationary charge. Often an extra-

neous acceleration-dependent term called
Schott energy is introduced to make the two
formulas conform to each other [9, 18, 19,
20, 21, 22]. But recently it has been explic-
itly shown that the Poynting flux passing
through a spherical surface of vanishingly
small dimensions surrounding the charge,
in its instantaneous rest-frame, is zero [12].
Actually in all neighbourhood of the charge
in its instantaneous rest-frame, the trans-
verse terms of the time-retarded velocity
fields cancel the acceleration fields, which
were responsible in Larmor’s formula for
radiation. This removes the need for the
acceleration-dependent Schott-energy term,
introduced in the literature on an ad hoc ba-
sis to comply with law of energy conserva-
tion (see also [23, 24, 25]).

The radiation reaction formula could
also be derived from Larmor’s formula of
radiative losses using the law of energy con-
servation [5, 6, 8], but only if the Schott
term remains unchanged at the ends of the
time interval considered, which happens if
the motion is cyclic. Momentum conser-
vation also remains a problem in Larmor’s
radiation picture. The radiation pattern of
an accelerated charge has a sin2 φ depen-
dence about the direction of acceleration
[5, 6, 8]. Due to this azimuthal symme-
try the net momentum carried by the radi-
ation is nil. Therefore the charge too can-
not be losing momentum, even though it is
undergoing radiative losses. Thus we have
a paradox of a radiating charge losing its
kinetic energy but without a correspond-
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ing change in its linear momentum. An ef-
fect of this inconsistency appears in a syn-
chrotron radiation case, where Larmor’s for-
mula leads to conclusions about the dynam-
ics of the radiating charge that are not con-
versant with special relativity and violate
energy-momentum conservation[26]. How-
ever no such inconsistencies arises when
one makes use of the radiation reaction for-
mula to calculate energy-momentum losses
of the radiating charge [27].

More recently it has been shown that
the two formulas are compatible and no con-
troversy really arises if one keeps a proper
distinction between the retarded time and
the real time [28]. In particular, one gets
Larmor’s formula, with radiative losses pro-
portional to the square of the acceleration if
one expresses the radiated power in terms of
quantities describing motion of the charge at
the retarded time. On the other hand if the
motion of the charge is expressed in terms
of real time (“present”) quantities, then one
arrives at the power loss formula usually de-
rived from the radiation reaction formula-
tion, i.e., the radiative power loss propor-
tional to the scalar product of the velocity
and the first time derivative of the accelera-
tion of the charge.

Without going any further into the con-
troversy between the two radiation loss for-
mulas, here we show that the radiation reac-
tion formula can be derived in an alternate,
though heuristic, method, from the mechan-
ical motion of the charge if one takes the
electrical mass of the charge as its inertial

mass. For this we shall make use of the ki-
netic power, i.e., a temporal rate of change
of the kinetic energy, of the charge to derive
a formula for radiative losses of the charge.

2 Electric inertial mass of a

charge

The electromagnetic field momentum is
given by the volume integral [5]

Pfield =
1

4πc

∫
dV (E× B). (1)

A charge, assumed to be a uniformly
charged spherical shell of radius ro, moving
with a non-relativistic, uniform velocity vo,
from the above volume integral, possesses
an electromagnetic field momentum

Pfield =
2e2vo

3ro c2 = melvo , (2)

with an electric mass defined as mel =

4U0/3c2 [29], where U0 = e2/2ro is the en-
ergy in self-fields of the charge in its rest
frame. The factor of 4/3 in the inertia of
electric mass has long since been highly an-
noysome. Poincaré [30] pointed out that
in a real charged particle, there must be
some non-electrical (!) “binding” forces to
balance the Coulomb self-repulsion of the
charge, which would remove the factor of
4/3. However these non-electrical binding
forces are not represented in the expressions
of the electromagnetic fields and an explana-
tion for this factor of 4/3 must be found
within the electromagnetic theory itself. It
has been explicitly shown [31] that this ex-
tra factor in the expression for the total
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electromagnetic momentum of the charge
arises because of the energy flow associated
with the electromagnetic self-repulsion force
within the charge constituents. The net force
on one hemisphere of the charge is along
the direction of motion, and on the remain-
ing hemisphere it is in a direction oppo-
site to the motion. Therefore as the charge
moves, a positive work is being done by self-
force on the forward hemisphere, while an
equal amount of work is being done by the
backward hemisphere against the self-force.
Though there is no net increase in the en-
ergy of the total system, yet because of the
electromagnetic self-force there is a continu-
ous flow of energy across the charged sphere
between its two halves, implying a corre-
sponding momentum due to this energy-
flow. This momentum is important even for
non-relativistic velocities and gives 1/3rd
additional contribution to the otherwise mo-
mentum of the charge [31], thereby explain-
ing this intriguing factor of 4/3 in the total
electromagnetic momentum.

3 Electromagnetic field

momentum of a uniformly

accelerated charge

Electromagnetic field of a charge e, from the
laws of electrodynamics, is determined at
time t by the charge motion (v and v̇) at the

retarded time t′ = t− r/c [5, 6, 8, 32].

E =

[
e(n− v/c)

γ2r2(1− n · v/c)3

+
en× {(n− v/c)× v̇}

rc2 (1− n · v/c)3

]
t′

(3)

B = n× E (4)

The first term on the right hand side of (Eq.
(3)) that fall with distance as 1/r2, is called
velocity fields while the second term, falling
with distance as 1/r, is called the accel-
eration fields, the latter generally assumed
to be solely responsible for radiation from
the charge. It is a standard practice to as-
sign the Poynting flux, calculated using ac-
celeration fields, through a spherical sur-
face, say Σ, of radius r = c(t − t′), centred
on the charge position at the retarded time
t′, as the radiation losses by the charge at
time t′, to get Larmor’s formula for radia-
tive losses [5, 6, 8]. However, Poynting theo-
rem tells us that the rate of the kinetic energy
loss by charge at present time t = t′ + r/c
(and not at retarded time t′) is related to
the instantaneous outgoing electromagnetic
power (Poynting flux) at t from the surface
Σ [5, 6, 8]. It may though be recalled that the
fields at the surface Σ are determined by the
motion of the charge at the retarded time t′

(Eq. (3)). This might appear to be a break
down of causality, after all, how come the
Poynting flux determined from the motion
of the charge in past, i.e., at an earlier time
t′, is being equated to the kinetic energy-loss
rate of the charge at a later time t? How can
one be sure that the charge will not behave
erratic between t′ and t, thus while keep-
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ing the Poynting flux unaffected (which is
already decided by the charge motion at t′)
but modifying the kinetic power loss rate of
the charge? Actually, even the charge mo-
tion at the present time t follows from the
charge motion at t′, determined by the laws
of mechanics, and thus both the electromag-
netic fields on the surface Σ as well as the
charge motion at time t are determined by
the charge motion at t′ and there is no con-
flict with the causality.

Let us first consider the case of a uni-
form acceleration v̇. The charge motion due
to acceleration is,

vo = v + v̇(to − t′) (5)

v̇o = v̇ , (6)

were v, v̇ on the right hand side represent
respectively the velocity and acceleration of
the charge at the retarded time t′, while
vo, v̇o on the left hand side represents the
corresponding values at the present time t.

For our considerations, we assume the
charge motion to be non-relativistic, where
Lorentz contraction may not play any role
and the moving charge continues to be a
uniformly charged sphere of radius ro, as
when it is at rest.

Using the vector identity v = n(v.n)−
n × {n × v} in the expression for electric
field (Eq. (3)), the electric field for a non-
relativistic motion of the charge, thereby
dropping all terms which are non-linear in

v or its derivatives, can be written as

E =
e n

r2(1− n · v/c)2 +
en× (n× v)

cr2

+
en× (n× v̇)

c2r
. (7)

Now, in the case of a uniform accelera-
tion, the retarded value of the velocity will be
v = vo − v̇r/c (Eq. (5)). Then Eq. (7) for the
electric field becomes

E =
en
r2

[
1 +

2n · vo

c
− 2n · v̇r

c2

]
+

en× (n× vo)

cr2 , (8)

with the magnetic field given by

B =
−e n× vo

r2c
. (9)

This begets for the Poynting flux

S =
c

4π

∮
Σ

dΣ n · (E× B)

=
e2v2

o
2r2c

∫ π

o
dθ sin3 θ

=
2e2v2

o
3r2c

. (10)

In the case of a uniformly accelerated
charge, evidently, there is no term propor-
tional to v̇2, independent of r, which is usu-
ally called the radiated power. Instead,
the Poynting flux (Eq. (10)) is merely what
would be for a hypothetical charge moving
with a uniform velocity vo, which is nothing
but the velocity of the actual charge at the
present time.

Now in the instantaneous rest-frame of
the charge, vo = 0, which means Poynt-
ing flux is zero (Eq. (10)). In fact, every-
where, the transverse component of the elec-
tric field is zero, and so is the magnetic

34/3/5 5 www.physedu.in



Physics Education Jul- Sep 2018

field. Incidentally Pauli [33] first pointed it
out that magnetic field is throughout zero in
the instantaneous rest-frame of a uniformly
accelerated charge, indicating the absence
of radiation from a uniformly accelerated
charge.

We can substitute for E and B from
Eqs. (8) and (9) in Eq. (1) to calculate the elec-
tromagnetic field momentum of a uniformly
accelerated charge, having a non-relativistic
motion. The transverse component of the
electric field makes a nil contribution to the
volume integral in Eq. (1). In fact, the only fi-
nite contribution to the electromagnetic field
momentum comes from the first radial term
(en/r2) in Eq. (8) to yield

Pfield =
−e2

4πc

∫
dV

n× (n× vo)

r4c

=
e2vo

2c2

∫ π

o
dθ sin3 θ

∫ ∞

ro

dr
r2

=
2e2vo

3ro c2 . (11)

This is the electromagnetic field momentum
in the volume outside the sphere of radius
ro. One gets exactly the same expression
(Eq. (2)) for the electromagnetic field mo-
mentum for a charge moving with a uniform
velocity equal to the “present velocity”, vo,
of the uniformly accelerated charge.

It has been shown explicitly elsewhere
that the self-field energy-momentum of a
charge moving with a uniform velocity
can be represented by the kinetic energy-
momentum of the charge, provided its elec-
tric mass is taken as its inertial mass [29, 31].
It has also been shown that for a uniform

acceleration, the contribution of the acceler-
ation fields to the total field energy of the
charge is just sufficient to match exactly the
amount needed for its velocity-dependent
self-field energy based on its extrapolated
motion at a future time [34]. This is possi-
ble since both make use of the velocity and
acceleration of the charge at t′, and things
in mechanics and electrodynamics are such
that the rates of change of energy from both
at any later time t(> t′) remain synchro-
nized for a uniformly accelerated charge.
We have also presently shown that for a uni-
formly accelerated charge, but with a non-
relativistic motion (see [34] for a full rela-
tivistic treatment), total Poynting flux, in-
cluding from both velocity and acceleration
field terms, at any time is just equal to that
of a charge moving uniformly with a veloc-
ity equal to the instantaneous “present” ve-
locity of the accelerated charge. Further, it
was shown that there is no excess flux in
fields that could be treated as radiation, over
and above that implied from the instanta-
neous “present” velocity of a uniformly ac-
celerated charge.

It follows that in the case of a uniformly
accelerated charge, its rate of change in ki-
netic energy is concurrent with the rate of
change in its electromagnetic field energy
Pfield, and is therefore given by the scalar
product of the rate of change of its electro-
magnetic field momentum Ṗfield, with its in-
stantaneous velocity vo.

Pfield = Ṗfield · vo =
2e2v̇ · vo

3ro c2 . (12)

34/3/5 6 www.physedu.in



Physics Education Jul- Sep 2018

4 Radiative losses from a charge

moving arbitrarily

As long as the charge continues to move
with acceleration equal to that at the retarded
time (i.e., a uniform acceleration) no mis-
match in field energy takes place. How-
ever, a mismatch in the field energy with
respect to the kinetic energy of the charge
could occur when charge moves with a non-
uniform acceleration since there is no infor-
mation in the field expressions about the
rate of change of acceleration of the charge
(cf. Eq. (3)). In that case the “real” veloc-
ity of the charge differs from the extrapo-
lated value obtained from the value of ac-
celeration at the retarded time and the ki-
netic energy due to the actual velocity no
longer agrees with that determined by the
acceleration at the retarded time. Then the
total energy in electromagnetic fields does
not correspond to that expected in self-field
because of the “real” velocity of the charge,
and it is this difference in the field energy
that could be said to be the power loss due to
radiation. Thus, in the case of a non-uniform
acceleration there will be a mismatch in the
field energy with respect to the kinetic en-
ergy, calculated from the actual velocity of
the charge, since the rate of change of accel-
eration v̈ does not enter in the electromag-
netic field expression (Eq. (3)), while it does
determine the actual velocity of the charge
(after all that is how v̈ gets defined).

We consider a non-relativistic motion of
a uniformly charged spherical shell of ra-

dius ro, moving initially with a uniform ac-
celeration v̇ up to some time t′ and then
a rate of change of acceleration, v̈, is im-
posed on the charge motion. Now at a
time to = t′ + ro/c the information about
the change in acceleration has not yet gone
beyond ro, hence the electromagnetic fields
and the energy-momentum in them outside
the charge radius ro are unaffected by the
imposition of v̈ on the charge motion at
t′. Therefore the electromagnetic energy-
momentum in fields external to the charge
continues at to to be that of a uniformly ac-
celerated charge, and thus determined from
v and v̇ at t′. Thus energy in the fields
mimics the extrapolated value of the kinetic
energy of the charge, with electric mass of
the charge taken as its inertial mass, for its
erstwhile uniform acceleration [29, 31, 34].
However, due to a change in the acceleration
(v̈), the actual kinetic energy of the charge at
to is no longer that determined from v and v̇
alone, as it will contain v̈-dependent terms
too. Thus by comparing the change in the
mechanical power between the two cases
(i.e., uniform acceleration and non-uniform
acceleration cases), one should be able to
calculate the excess power going in the fields
above the actual rate of change of the kinetic
energy of the charge.

Laws of mechanics determine the actual
charge motion at to, taking v̈ also into con-
sideration

vo = v + v̇(to − t′) +
v̈(to − t′)2

2
, (13)

v̇o = v̇ + v̈(to − t′). (14)
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The electrodynamics fields (Eq. (3)) do not
take into consideration any rate of change
of acceleration. For a finite rate of change
of acceleration, the velocity and thereby ki-
netic energy of charge at to would contain
v̈, meaning charge would have different ki-
netic energy than what went into its electro-
magnetic fields, the latter not taking v̈ into
account.
The expression for the kinetic power is,

P = d(melv2
o/2)/dt = mel v̇o · vo , (15)

which for a uniform acceleration case (v̈o =

0) from Eqs. (5) and (6) is,

P1 = mel v̇ ·
[

v + v̇(to − t′)
]

. (16)

The expression for the power going into
the kinetic energy of the charge in a non-
uniform acceleration case (v̈o 6= 0), from
Eqs. (13), (14) and (15) is

P2 = mel

[
v̇ + v̈(to − t′)

]
·
[

v + v̇(to − t′) +
v̈(to − t′)2

2

]
. (17)

But this is not the power going into
the changing electromagnetic fields of the
charge, which does not involve v̈ (see Eq.
(3)) and is thus still given by Eq. (12), and
equals P1 (Eq. (16)). The excess power, ∆P ,
going into the fields over and above the ac-
tual kinetic power of the charge (P1 − P2)

then is,

∆P = mel v̇ ·
[

v + v̇(to − t′)
]

−mel

[
v̇ + v̈(to − t′)

]
·
[

v + v̇(to − t′) + v̈(to−t′)2

2

]
, (18)

which to the lowest order in to − t′ (= ro/c)
is

∆P = −mel v̈ · vo(ro/c). (19)

Substituting for the electric mass of a charge,
mel = 2e2/3roc2, the excess power in the
electromagnetic fields is,

∆P = − 2e2

3roc2 v̈ · vo
ro

c
=
−2e2v̈ · vo

3c3 . (20)

This is the formula for power losses from a
radiating charge.

We can write this power loss being due
to a radiative drag force F as the charge
moves with a velocity vo.

∆P = −F · vo =
−2e2v̈ · vo

3c3 . (21)

or [
F− 2e2v̈

3c3

]
· vo = 0. (22)

Since in Eq. (22) vo is an arbitrary vector, im-
plying that the equation is true for all values
of vo, we have

F =
2e2v̈
3c3 . (23)

Here it could be objected that one could
add to F any arbitrary vector A such that
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vo × A = 0, and still satisfy Eq. (22). For
instance, the force on a charge in a magnetic
field B is proportional to vo × B. However,
since no power loss results in such a case,
it does not represent any radiation reaction
force. Therefore Eq. (23) remains valid for
the radiation reaction force.

This formula for radiative drag force or
radiation reaction is the same as derived in
literature from the self-force of a charged
sphere. But we have here derived radiation
reaction and the radiative losses from the ki-
netic power of the electric inertial mass of a
charged particle.

It has sometimes been stated in the lit-
erature [16] that radiation reaction is not
represented correctly by Eq. (23), and that
it should instead be calculated from Lar-
mor’s formula for radiative losses. How-
ever, that is an erroneous statement and by
using synchrotron radiative losses as an ex-
ample, it can be conclusively demonstrated
that the radiation damping calculated from
Larmor’s formula (or its relativistic gener-
alization Liénard’s formula) does not yield
results compatible with the special relativ-
ity and further, violates energy-momentum
conservation [26].

In an assumedly uniform and homoge-
neous magnetic field, a charge will be mov-
ing in a helical path with a velocity com-
ponent v‖ = v cos ψ, parallel to the mag-
netic field, where ψ is the pitch angle (i.e.,
angle with respect to the magnetic field vec-
tor) of the charge. Since the radiation is con-
fined to a narrow cone around the instan-

taneous direction of motion of the charge
[5, 8, 35], from Larmor’s formula (or rather
from Liénard’s formula), any radiation re-
action on the charge will be in a direction
just opposite to its instantaneous velocity
vector [36, 37], implying no change in the
pitch angle of the charge. Thus the ratio
v⊥/v‖ = tan ψ, will not change. However,
there is something amiss in the above ar-
guments and the above picture is not con-
sistent with the special theory of relativ-
ity. A more careful consideration shows that
in the case of synchrotron losses, the ve-
locity component parallel to the magnetic
field (v‖) of the charge remains unaffected,
while magnitude of v⊥ steadily decreases
due to radiative losses and as a consequence
the pitch angle of the radiating charge in
general changes, with the charge motion
gradually getting aligned with the magnetic
field direction [27]. Thus the dynamics of
the charged particle computed from Lar-
mor’s formula (or its relativistic generaliza-
tion Liénard’s formula) does not yield re-
sults compatible with the special relativity
and that only the radiation reaction formula
yields a picture consistent with the special
relativity.

5 Conclusions

From mechanical considerations of electric
inertial mass of a charge, formulas for ra-
diation reaction and radiative losses were
derived, albeit in a heuristic manner. The
derivation made use of the fact that,
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1. A moving charge has an electromag-
netic field momentum which we can infer
from classical mechanics if one uses its elec-
tric inertial mass.

2. In the case of a uniformly accelerated
charge, its rate of change in kinetic energy is
concurrent with the rate of change in its elec-
tromagnetic field energy, and is given by the
scalar product of its instantaneous velocity
with the rate of change of its electromagnetic
momentum.

3. In the case of a varying accel-
eration, the energy in the electromagnetic
fields changes at a different rate than that of
change of kinetic energy of the charge and
it is this energy difference that is not repre-
sented in the actual motion of the charge and
can be called as a radiative loss.

The accordingly derived instantaneous
power loss turns out to be directly propor-
tional to the scalar product of the velocity
and the rate of change of acceleration of the
charge as derived earlier in literature from
radiation reaction due to the self-force of the
charge.
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Abstract 

 

In most of the universities and colleges, 
introduction of Quantum Mechanics starts with 
failures of Classical Mechanics. Mathematics 
needed to understand quantum mechanics 
(operator formalism etc.) starts quite abruptly 
after that. This paper discusses a simple 
teaching approach to introduced Quantum 
Mechanics to the newcomers by answering 
some outstanding questions which students are 
hesitant to ask.  

 
1. Introduction 

 
Generally, introduction of quantum mechanics 
starts with failures of Classical Mechanics. 
Assumptions which are introduced to solve these 
failures are said to be part of Quantum Mechanics. 
Wave function and its physical significance, 
Schrödinger equation and a few problems which  
can be exactly solved are then discussed. Postulates 
of operator formalism of Quantum Mechanics and 
its mathematics start after that. This is the approach 
taken by most of the UG/PG teachers of the 
University. Although there is nothing wrong in this 
approach. But more often, students are left with 
many unanswered questions. Some of the questions 
do not arise because of the approach and some 
questions which arise in their mind get suppressed 

because of the totally new view of looking into 
systems as compared to Classical Mechanics.   
 
Some of the outstanding questions students faces 
are;  

 Whether Quantum Mechanics is a totally 
new subject/concept 

 What is the need of wavefunction and why 
it has to be a complex function  

 
 
 

 Where exactly the transition lies between 
Quantum world to Classical world  

 Why there is a Uncertainty relation and 
whether it is possible to experimentally 
verify it   

 Why there is any need of Vector space, 
Hilbert space, operators which are linear 
and Hermitian in nature 

 
This paper discusses a teaching approach to 
understand the answers of all these above 
mentioned questions which often students hesitate 
to ask and also are unable to find them in standard 
textbooks [1, 2].    
 

2. Introduction to Quantum 
Mechanics  
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It is a wrong notion which most of the students 
carry that Quantum Mechanics is the 
approximation of Classical Mechanics. It is mainly 
because they see probabilities and approximation 
everywhere in Quantum Mechanics. In fact, 
Classical Mechanics is the approximation of 
Quantum Mechanics [3]. One can derive the 
Newton’s laws of motion which form the basis of 
Classical Mechanics from Schrodinger’s equation. 
But the Schrodinger’s equation itself is non 
derivable and stands fundamental principle in itself. 
In many books, it is derived using a free particle 
example which leads to this misunderstanding. 
Hence students assume that it is derivable but as a 
matter of fact it is not [3]. Quantum Mechanics is 
not a totally new subject or concept. Rather it is 
mixture of subject like optics, mathematics, and 
statistics. Relation between Quantum Mechanics 
and optics lies in the wave-particle duality. Much 
experimental verification had done to verify both 
light as well as particle behaves as both particle and 
wave like. This leads to concept of wave packet. 
Wave packet is neither a wave nor a particle. It is 
hanging in between wave and particle. But is has 
all the essential properties of wave and particle. 
Many derivations and concepts in optics are taken 
as it is in Quantum Mechanics. Mathematics and 
statistics needed for Quantum Mechanics is also not 
new [4-5]. It was known before. This point should 
be emphasis to students so that the fear factor of 
learning entirely new view or concept will go away.  
Introduction to nine formulations of Quantum 
Mechanics [6] to the students is also an essential 
step in the first year Quantum Mechanical course. 
Mathematical analogies and differences between 
Quantum Mechanics and Classical Mechanics 
should be properly conveyed to the students. For 
example, Quantum Hamiltonian-Jacobi formalism 
and it’s analogy in Classical Mechanics [7].   
 
3. Complex wavefunction  

Wavefunction has to be complete description of the 
quantum system then it has to be a complex 
function. Complex numbers were invented because 
of our inability to tell the root of -1. This inability 

leads us to call it an imaginary number denoted by 
i. However if we square it up then it yields an exact 
answer, a real number that is -1.   If the wave 
function is complex, then it will behave in the same 
way. But to know why it has to be a complex 
function consider following arguments. Due to 
wave-particle duality, one needs to consider 
concept of wavepacket. The most generalized 
solution of a wave equation is given by, 

)1(),( ][( tkziCetzA   
Eq. (1) shows that A(z,t) is a complex function. 
Similarly if the    wave function has to be a 
complete description of the system, then it has to be 
complex function. 
 

4.  Transition between Classical and 
Quantum Mechanics  

Often, students read in the textbook that 
classical mechanics is applicable to 
macroscopic world and quantum mechanics is 
applicable to microscopic world. However, it is 
difficult to pinpoint at which size scale exactly 
the transition between Quantum Mechanics and 
Classical Mechanics happens but surely it is 
related to magnitude of Planck’s constant. As 
we see below, magnitude of Planck constant ‘h’ 
plays very important role in defining the 
boundaries of “classical world” and “quantum 
world”. Consider the magnitude of h, its value 
is 6.634×10-34 J.s, which is ridiculously small 
number and in good approximation equivalent 
to ZERO. Then why it is so important in 
Physics?  Importance of Planck’s constant 
comes from its ability to differentiate between 
Quantum and Classical world. Any change in 
the Planck constant value directly affects the 
location of border/boundary between the 
Quantum and Classical world.  As of today we 
understand that to observe Quantum effects we 
need to look into atomic and molecular world 
i.e. Microscopic world and classical effects are 
connected with our day to day experiences i.e. 
Macroscopic world. In other words as we 
increase the size of the objects then one can see 
the transition between Quantum world to 
classical world. Only thing is we don’t know 
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yet what the exact size is, where this transition 
happens.   
 
Let us think of two cases where Planck’s 
constant ‘h’ is different from its value of 
6.634×10-34 J.s. Imagine there exists a switch 
with which we can change the value of ‘h’ from 
its current value.  However there is no 
guarantee that Universe will remain same and 
life forms will survive this change. We will 
consider following two cases based upon this. 
 
Case I: When h=6.634×10-33 J.s 
Suppose the magnitude of h is one order more 
than the current value. De Broglie wavelength 
is defined by λ=h/p   where p is the momentum. 
So comparable to existing world, wavelength in 
this world will be one order of magnitude 
greater. If the wavelength becomes large then it 
will easier to observe the quantum effect. So 
size wise we will see the transition between 
Classical to Quantum World bit early than the 
current one. 
 
Case II: When h=6.634×10-35 J.s 
In this case ‘h’ is smaller than an order of 
magnitude compared to current one. De Broglie 
wavelength becomes smaller in this world. 
Hence if the wavelength becomes small then it 
will become difficult to observe the quantum 
effect. So size wise we will see the transition 
between Classical to Quantum World bit later 
than the current one. 
 

5. Uncertainty relation 

Wave particle duality and wavepacket concept in 
Quantum Mechanics are responsible for Heisenberg 
uncertainty principle. The entire derivation of 
uncertainty principle from the definition of 
uncertainty in statistics is very well given in almost 
all the leading text books of Quantum Mechanics. 
Researchers nowadays are investigating rigorous 
interpretation of Heisenberg's uncertainty statements 
[8, 9].    

In the normal text books, uncertainty relation is 
further explained using thought experiment. Student 

often assume that the experimental realization of 
uncertainty relation is very difficult and hence has 
not done till now. So that is why a thought 
experiment is given in most of the books. Given 
below a simple explanation of energy time 
uncertainty equation  

Consider the energy time uncertainty equation and 
let us assume that it is approximately equal to 
Planck constant ‘h’ (although it is 2/  ).  
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Now let us analyze the last relation i.e. ∆ν.Δt=1, by 
considering the case of continues wave (cw) laser 
and pulsed laser.  

Case I 

Let us consider the case of cw laser first and recall 
the basic properties of a LASER. Laser light is 
highly monochromatic, coherent and directional. 
Monochromatic means it emit only one frequency, 
so if we keep a spectrometer in front of it, we will 
be able to see that the frequency vs intensity graph 
shoots up only at one particular frequency (with 
ideally zero width) and then it goes to zero as shown 
in following fig. 1.  Fig. 1 resembles to graph of 
delta function.   

 

Fig 1: Frequency vs intensity graph of monochromatic 
continuous wave laser. 

Let us now write the frequency time uncertainty relation 
once again  
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1.  t  

Now since the light is continuously coming out of the 
laser system, Δt in this case is infinite. So using above 
relation 

0/1   

 This implies that the frequency width is zero or in other 
word cw laser is monochromatic in nature. Also we 
know that Fourier transform of delta function is a 
constant function.  

Case-II 

Now consider the case of pulsed laser, light from this 
laser is not coming out continuously, it is coming in the 
form of pulses having finite duration ranging from few 
μs (10-6 sec) to attoseconds (10-18 sec). In this case Δt is 
finite but very small. According to uncertainty relation 
if Δt is finite but very small, then Δν should be also 
finite. This implies that pulsed laser is not 
monochromatic, it is polychromatic. In reality, pulsed 
laser is having frequency width as predicted by the 
uncertainty relation and can be easily experimentally 
verified.Hence this uncertainty principle can be verified 
experimentally in the laboratory having cw and pulse 
laser. 

6.  Concept of Hilbert Space and 
Operators 

Let us assume a two level atomic system as shown in 
Fig.2. Wave function of ground level is taken to be ψ1 
and that of the excited level denoted by ψ2. Let the 
energy of ground and excited state be represented by E1 
and E2. 

 
Fig 2: Two level atomic system 

Assume E1 and E2 are experimental values of 
energy of level ψ1 and ψ2. Ideally E1 and E2 should 
be equal to energy eigenvalues, if the exact form of 
ψ1 and ψ2 is known. So the best way to verify a 
quantum theory is to match calculated eigenvalues 
with the experimental results if the eigenfunctions 
are known. This point should be emphasis to 
students, because this is the link between 
theoretical concepts and experimental results. To 
match the calculated eigenvalue with the 
experimental result (a real number), eigenvalue 
should be a real number. Only Hermitian operators 
can yield a real eigenvalue. That is why operators 
in Quantum Mechanics are Hermitian operators. 
According to postulates of operator formalism, any 
arbitrary wavefunction ψ representing a quantum 
system such as a two level atomic system can be 
given by 
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Where, |Cn|2 equals the probability that the system 
is in the state ψn. There are infinite numbers of 
values Cn can take. Hence number of ψ’s which 
represent a two level quantum system are infinite. 
So even if we consider a simplified two level 
system, number of ψ’s which can represent the 
system are infinite. In Quantum Mechanics, we 
represent all these ψ’s on Hilbert space. Hilbert 
space is defined as “A complete and infinite-
dimensional complex Euclidean Space”. In a 
realistic quantum system, there are infinite numbers 
of levels. So the number of eigenfunctions (and 
hence basis) will become infinite. Hence the Vector 
space becomes infinite dimensional. Numbers of 
arbitrary vectors which also represent the system 
grow even larger because of the inclusion of 
infinite number of basis vectors. In fact, number of 
arbitrary vectors grew so large that each Cauchy 
sequence in a vector space having n-dimension 
denoted by Hn converges to a limit in Hn (||ψi-ψk|| 
0, for i and k ∞). This is the exact requirement 
for a Vector space to be complete. Wave function is 
a complex function; therefore we need to consider a 
complex Euclidean space. This is the reason, why 
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we need to define wavevectors and operators on 
Hilbert space. Once this point is clear to students, 
rest is all mathematics. 

7. Conclusion 

A simplified teaching methodology is presented for 
the benefit of students. Although the complete 
introduction to the subject is not presented, 
nevertheless it provides answers to some 
outstanding questions which students face while 
dealing with the Quantum Mechanics for the first 
time. Classroom feedback to this introduction was 
very well appreciated by students. Many of them 
were surprised by this unorthodox approach to the 
beginning of their journey in Quantum Mechanics. 
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